Constraining dissipative corrections to particle distributions at freeze-out from anisotropic flow

Sudden Freeze-Out Approximation

- Matter produced in heavy-ion collisions follows fluid dynamics (continuous medium) - The detectors observe particles, created matter is no longer a continuous medium
\rightarrow How does this transition proceed?
- Simple, yet promising ansatz:

Sudden Freeze-Out Approximation

- Sharp transition between fluid and particles: Define a hyper-surface Σ on which the transition is expected to take place; at each point of Σ free streaming particles are emitted according to the thermal distributions in the rest frame of the fluid

Cooper-Frye Formula
Momentum spectrum for a given particle:
$E_{\bar{p}} \frac{d^{3} N}{d^{3} \vec{p}}=\frac{g}{(2 \pi)^{3}} \int_{\Sigma} f\left(\frac{p \cdot u(x)}{T}\right) p^{u} d^{3} \sigma_{u}(x)$

- f is the single particle occupation factor (e.g. Bose-Einstein-/Fermi-Dirac-distribution)
- Here: Classical ideal fluid $\left(f \rightarrow f_{0}\right)$
$f_{0}\left(\frac{p \cdot u(x)}{T}\right) \propto \mathrm{e}^{-\frac{p \cdot u(x)}{T}}$
\rightarrow Equilibrium thermal distribution f_{o} (Maxwell-Boltzmann-distribution)
- Remark: (Initial) fluctuations are ignored

Decoupling from an ideal fluid

- Computation of the Cooper-Frye integral via method of steepest descent: [1]

- Results:

Two „kinds" of particles: slow and fast particles depending on the tranverse momentum p_{t}

$$
\begin{aligned}
& p_{t}<m_{t} \bar{u}_{\max } \text { slow particles } \\
& p_{t}>m_{t} \bar{u}_{\text {max }} \quad \text { fast particles }
\end{aligned}
$$

with $\bar{u}_{\text {max }}$ the maximum value for $\left|\boldsymbol{u}_{t}\right|$ with a fixed rapidity and azimuth

- Stronger constraints on p_{t} are needed to ensure validity of the approximation

From an ideal fluid to a dissipative fluid

- Four-velocity $u_{\mu}(x)$ is changed
$\rightarrow u_{\mu}(x)$ has to be a solution of the relativistic Navier-Stokes or second-order equations
\rightarrow This fact can be neglected here, because the focus is on corrections arising at freeze-out
- f_{0} in the Cooper-Frye formula receives correction terms, depending on the dissipative effects: [2] \rightarrow First-order corrections δf_{l} : shear and bulk viscosity

$f_{0} \rightarrow f_{0}+\delta f_{\text {Ishear }}+\delta f_{\text {Ibulk }}$	
$\rightarrow \delta f_{\text {Ishear }}$	$=C_{\text {shear }}(p \cdot u(x)) \pi^{\mu \nu}(x) p_{\mu} p_{v} f_{0}(p \cdot u(x))$
$\rightarrow \delta f_{\text {Ibulk }}=$	$C_{\text {bulk }}\left(p \cdot u(x), p^{2}\right) \Pi(x) f_{0}(p \cdot u(x))$

\rightarrow Second-order corrections δf_{2} : only partialy known

- $C_{\text {shear }}$ and $C_{\text {bulk }}:$ not really known \rightarrow Different options for possible models (e.g. Grad prescription)

Decoupling from a dissipative fluid

Slow Particles
 - Emitted from point x, where $u_{\mu}=\frac{p_{\mu}}{m}$

- The shear tensor must fullfil the Landau
relation: $\pi^{\mu v}(x) u_{\mu}(x)=0$
$\rightarrow \delta f_{\text {Ishear }}=0$, since for slow particles: $p_{\mu} \propto u_{\mu}$
- The factor $C_{\text {buuk }}$ is a function of $p^{2}=m^{2}$
\rightarrow The contribution of $\delta f_{l \text { luwk }}$ is identical for particles with the same four-velocity u_{μ}

- Conclusion:

Same result as in the ideal case [3]

$$
\begin{aligned}
& E_{\vec{p}} \frac{d^{3} N}{d^{3} \vec{p}}=c(m) F\left(\frac{p_{t}}{m}, y, \Phi\right) \\
& \text { mass ordering of } v_{n}\left(p_{t}, y\right)
\end{aligned}
$$

with modified c and F compared to the results for the ideal fluid [1]

Fast Particles

- Idea:

Fast particles, emitted in a given direction, all come from the same saddle point, where the fluid velocity reaches at its maximum $u_{\text {max }}$

- At the saddle point:
$p \cdot u(x)=m_{t} \sqrt{1+u_{\text {max }}(\varphi)^{2}}-p_{t} u_{\text {max }}(\varphi)$
\rightarrow Governs the momentum spectrum:

$$
E_{\vec{p}} \frac{d^{3} N}{d^{3} \vec{p}} \propto \mathrm{e}^{\frac{p, u_{a x}-m_{,}, \sqrt{1+u_{m a x}^{2}}}{T}}
$$

- $u_{\text {max }}$ dependence on the azimuth:
$u_{\text {max }}^{\text {max }}(\varphi)=\bar{u}_{\text {max }}\left(1+\sum_{n=1} 2 \mathrm{~V}_{n} \cos (n \varphi)\right)$
\rightarrow Yield the "ideal" flow coefficients v_{n}

$$
\begin{aligned}
& v_{2}\left(p_{t}\right)^{\text {iteal }}=V_{2} I\left(p_{t}\right) \\
& v_{3}\left(p_{t}\right)^{\text {ileal }}=V_{3} I\left(p_{t}\right)+o\left(V_{1} V_{2}\right) \\
& v_{4}\left(p_{t}\right)^{\text {iteal }}=V_{4} I\left(p_{t}\right)+V_{2}^{2} I\left(p_{t}\right)^{2} \\
& v_{5}\left(p_{t}\right)^{\text {iteal }}=V_{2} V_{3} I\left(p_{t}\right)+o\left(V_{5}\right)
\end{aligned}
$$

$I\left(p_{t}\right)=\frac{\bar{u}_{\text {max }}}{T}\left[p_{t}-m_{t} \bar{v}_{\text {max }}\right] \quad \bar{v}_{\text {max }}=\frac{\bar{u}_{\text {max }}}{\sqrt{1+\bar{u}_{\text {max }}^{2}}}$

Decoupling from a dissipative fluid

$$
\begin{aligned}
& \text { Fast particles } \\
& \text { - Adding the first-order correction terms: } \\
& E_{\vec{p}} \frac{d^{3} N}{d^{3} \vec{p}} \propto \mathrm{e}^{\frac{p, \mu_{\text {uma }}-m_{1}, \sqrt{1+h_{\text {max }}^{2}}}{T}}\left(1+\delta f_{\text {lbulk }}+\delta f_{\text {Isheax }}\right) \\
& \text { - An example for the correction terms: } \\
& \text { - } \delta f_{\text {Ibuk }} \text { will be neglected for simplicity } \\
& \text { - } \delta f_{I_{\text {stearer }}} \text { remains } \\
& \rightarrow \text { Only the } \pi^{r}(x) \text {-term contributes: } \delta f_{\text {Isthar }}=C_{\text {shear }} \eta\left[p_{t}-m_{t} v_{\text {max }}\right]^{2}\left\langle\nabla^{r} u^{r}\right\rangle \\
& E_{\vec{p}} \frac{d^{3} N}{d^{3} \vec{p}} \propto \mathrm{e}^{\frac{p, u_{\text {mem }}-m_{n} \sqrt{1+u_{\text {mex }}^{2}}}{T}}\left(1+C_{\text {shear }} \eta\left[p_{t}-m_{t} v_{\text {max }}\right]^{2}\left\langle\nabla^{r} u^{r}\right\rangle\right) \\
& \text { Flow coefficients [3] } \\
& v_{2}\left(p_{t}\right)=V_{2}\left[I\left(p_{t}\right)-D\left(p_{t}\right)\right] \\
& v_{3}\left(p_{t}\right)=V_{3}\left[I\left(p_{t}\right)-D\left(p_{t}\right)\right]+o\left(V_{1} V_{2}\right) \\
& v_{4}\left(p_{t}\right)=V_{4}\left[I\left(p_{t}\right)-D\left(p_{t}\right)\right]+V_{2}^{2}\left[\frac{I\left(p_{t}\right)^{2}}{2}-I\left(p_{t}\right) D\left(p_{t}\right)\right] \\
& v_{s}\left(p_{t}\right)=V_{2} V_{3}\left[I\left(p_{t}\right)-D\left(p_{t}\right)\right]+o\left(V_{5}\right) \\
& D\left(p_{t}\right)=\frac{m_{t} \bar{v}_{\text {max }}}{p_{t}-m_{t} \bar{v}_{\text {max }}} \frac{2}{1+\bar{u}_{\text {max }}^{2}} h\left(\frac{p_{t}-m_{t} \overline{\bar{m}}_{\text {max }}}{T}\right) \\
& h(\xi)=\frac{g(\xi)}{1+g(\xi)} \\
& g(\xi)=\xi^{2} \eta C_{\text {shear }}\left(x_{s p}\right)\left\langle\nabla^{r} u^{r}\right\rangle\left(x_{s p p}\right)
\end{aligned}
$$

$\rightarrow D\left(p_{t}\right)$ comes from the dissipative effects

$$
\cdot \frac{v_{3}\left(p_{t}\right)}{v_{2}\left(p_{t}\right)}=\frac{V_{3}}{V_{2}}
$$

The ratio between v_{2} and v_{3} should be a constant,
in fact, if $V_{2}=V_{3}$ and all other $V_{n}=0$, then v_{2} and
v_{3} should not be any different and the ratio
should be equal to one

- $v_{2}\left(p_{t}\right)^{\text {ideal }}-v_{2}\left(p_{t}\right)^{\text {isce }}=V_{2} D\left(p_{t}\right)$
$v_{3}\left(p_{t}\right)^{\text {ideal }}-v_{3}\left(p_{t}\right)^{\text {vise }}=V_{3} D\left(p_{t}\right)+\sigma\left(V_{1} V_{2}\right)$

For $\bar{u}_{\text {max }}$ not too large ($\bar{u}_{\text {max }} \ll 1$), the analytic solution $D\left(p_{t}\right)$ (blue) can be compared to the disspative correction calculated with a "blast wave model" ansatz (green)
$\frac{\left(v_{s}\left(p_{t}\right)-v_{2}\left(p_{t}\right) v_{3}\left(p_{t}\right)\right)^{2}}{v_{3}\left(p_{t}\right)^{2}}=V_{2}^{2} D\left(p_{t}\right)^{2}$

$$
2 v_{4}\left(p_{t}\right)-v_{2}\left(p_{t}\right)^{2}=V_{2}^{2} D\left(p_{t}\right)^{2}
$$

Two independent relations from which the viscous correction could be extracted
\rightarrow Further results to compare with the analytic calculation $D\left(p_{t}\right)$

Summary

- Slow particles: Viscous corrections do not
change the scaling laws
- Fast particles: Flow coefficients gain a
viscous correction term
- Flow coefficients: New relations between
different flow coefficients are found

Other relations possible

- Other relations possible
- Other freeze-out ansätze

References

[1] Nicolas Borghini, Jean-Yves Ollitrault; Physics Letters B 642 (2006) 227-231 [2] Derek Teaney; Physical Review C 68, 034913 (2003)
[3] Christian Lang, Nicolas Borghini; arXiv:1312.7763

