
 

 

Decoupling from a dissipative fluid

Constraining dissipative corrections to particle distributions 
at freeze-out from anisotropic flow
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● Four-velocity u
μ
(x) is changed

 → u
μ
(x) has to be a solution of the relativistic Navier-Stokes or second-order equations

→ This fact can be neglected here, because the focus is on corrections arising at freeze-out

● f
0
 in the Cooper-Frye formula receives correction terms, depending on the dissipative effects: [2]

→ First-order corrections δf
1 
: shear and bulk viscosity

f
0
 → f

0
 + δf

1shear
 + δf

1bulk

    
→  δf

1shear
 = C

shear
(p∙u(x)) π μν(x) p

μ 
p

ν  
f

0
(p∙u(x))

→  δf
1bulk

 = C
bulk

(p∙u(x),p2) Π(x) 
 
f

0
(p∙u(x))

→ Second-order corrections δf
2 
: only partialy known

● C
shear

 and C
bulk 

: not really known → Different options for possible models (e.g. Grad prescription)

Decoupling from an ideal fluid

 

● Matter produced in heavy-ion collisions follows 

   fluid dynamics (continuous medium)

● The detectors observe particles, created           

   matter is no longer a continuous medium

→ How does this transition proceed?

●  Simple, yet promising ansatz:

Sudden Freeze-Out Approximation

● Sharp transition between fluid and particles:

Define a hyper-surface Σ on which the            

transition is expected to take place;

at each point of Σ free streaming particles      

are emitted according to the thermal     

distributions in the rest frame of the fluid

Cooper-Frye Formula

Momentum spectrum for a given particle:

● f  is the single particle occupation factor

 (e.g. Bose-Einstein-/Fermi-Dirac-distribution)

  

● Here: Classical ideal fluid  ( f → 
 
f
0  

)

→ Equilibrium thermal distribution f
0

(Maxwell-Boltzmann-distribution)

● Remark: (Initial) fluctuations are ignored

E p⃗
d3 N

d 3 p⃗
= g

(2π)3∫
Σ

f (
p⋅u(x)

T
) pμ d3σμ(x)

 f 0(
p⋅u(x)

T
) ∝ e

−
p⋅u (x)

T

The ratio between v
2
 and v

3
 should be a constant, 

in fact, if V
2
 = V

3
 and all other V

n
 = 0, then v

2
 and   

v
3
 should not be any different and the ratio    

should be equal to one

From an ideal fluid to a dissipative fluid

Decoupling from a dissipative fluid

Sudden Freeze-Out Approximation
Fast particles

● Adding the first-order correction terms:

 

● An example for the correction terms:

● δf
1bulk

 will be neglected for simplicity

● δf
1shear

 remains

→ Only the πrr(x)-term contributes:

Momentum spectrum

Flow coefficients [3]

→  D( p
t  
) comes from the dissipative effects

Dissipative effects [3]

●

●

●

E p⃗
d3 N

d 3 p⃗
∝ e

pt umax−mt √1+umax
2

T (1+δ f 1bulk+δ f 1shear)

 

v2( pt) = V 2[ I ( pt)−D ( pt)]

v3( p t) = V 3[ I ( p t)−D( p t)] + ο(V 1 V 2)

v4( p t) = V 4[ I ( p t)−D( p t)] + V 2
2[

I ( pt)
2

2
−I ( p t) D( p t)]

v5( pt) = V 2V 3[ I ( pt)−D( p t)] + ο(V 5)

I ( pt) =
ūmax

T
[ pt−mt v̄max ]

D( pt) =
mt v̄max
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T
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h(ξ ) =
g (ξ )

1+g (ξ )

g (ξ ) = ξ 2 ηC shear( x s.p.)〈∇
r ur 〉(x s.p.)

v3( pt)
v2( pt)

=
V 3

V 2

 

● Computation of the Cooper-Frye integral via method of steepest descent: [1]

● Results:

Two „kinds“ of particles: slow and fast particles depending on the tranverse momentum p
t

with         the maximum value for       with a fixed rapidity and azimuth  

● Stronger constraints on p
t
 are needed to ensure validity of the approximation

pt<mt ūmax slow particles

pt>mt ūmax fast particles

umax(ϕ ) = ūmax (1+∑
n=1

2Vn cos(n ϕ ))

v2( pt)
ideal − v2( pt)

visc. = V 2 D( pt)

(v5( pt) − v2( pt)v3( pt))
2

v3( pt)
2

= V 2
2 D( pt)

2

2 v4( pt)−v2( pt)
2 = V 2

2 D( pt)
2

v3( pt)
ideal − v3( pt)

visc. = V 3 D( pt) + σ(V 1V 2)

πμ ν (x)uμ ( x) = 0

 
E p⃗

d 3 N

d 3 p⃗
=c (m)F (

p t

m
, y ,Φ)

mass ordering of vn( p t , y)

Slow Particles

● Emitted from point x, where

 

● The shear tensor must fullfil the Landau         

   relation:

 → δf
1shear

 = 0, since for slow particles: 

● The factor C
bulk

 is a function of p2 = m2

→ The contribution of δf
1bulk 

is identical for        

           particles with the same four-velocity u
μ

● Conclusion:

  Same result as in the ideal case [3]

with modified c and F compared to the results 

for the ideal fluid [1]

Fast Particles
● Idea: 

 Fast particles, emitted in a given direction, all     

   come from the same saddle point, where the     

   fluid velocity reaches at its maximum u
max

● At the saddle point:

 

 → Governs the momentum spectrum:

● u
max

 dependence on the azimuth:

→ Yield the “ideal” flow coefficients v
n

δ f 1shear = C shear η[ pt−mt vmax ]
2 〈∇ r ur 〉

pμ∝uμ Summary
● Slow particles: Viscous corrections do not       

   change the scaling laws

● Fast particles: Flow coefficients gain a            

   viscous correction term

● Flow coefficients: New relations between        

  different flow coefficients are found
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Outlook 

● Other relations possible

● Other freeze-out ansätze

Two independent relations from which the          

viscous correction could be extracted

  → Further results to compare with the   

        analytic calculation D( p
t  
)

For         not too large ( 
          

<< 1 ),  the analytic solution D( p
t  
) (blue) can be compared to the                

disspative correction calculated with a “blast wave model” ansatz (green)
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p⋅u( x) = mt√1+umax(ϕ )2− pt umax(ϕ )
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v2( pt)
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2
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E p⃗
d 3N

d 3 p⃗
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