Constraining dissipative corrections to particle distributions at freeze-out from anisotropic flow

Christian Lang, Nicolas Borghini

University of Bielefeld



Sudden Freeze-Out Approximation

• Matter produced in heavy-ion collisions follows fluid dynamics (continuous medium)

Universität Bielefeld

- The detectors observe particles, created matter is no longer a continuous medium
 - \rightarrow How does this transition proceed?
- Simple, yet promising ansatz:

Cooper-Frye Formula

Momentum spectrum for a given particle:

 $E_{\vec{p}} \frac{d^3 N}{d^3 \vec{p}} = \frac{g}{(2\pi)^3} \int_{\Sigma} f\left(\frac{p \cdot u(x)}{T}\right) p^{\mu} d^3 \sigma_{\mu}(x)$

• *f* is the single particle occupation factor (e.g. Bose-Einstein-/Fermi-Dirac-distribution)

Decoupling from a dissipative fluid

Fast particles

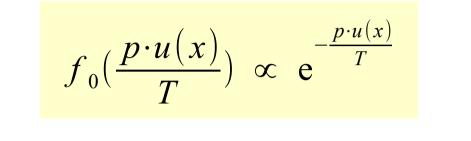
• Adding the first-order correction terms:

$$E_{\vec{p}}\frac{d^3N}{d^3\vec{p}} \propto e^{\frac{p_t u_{max} - m_t \sqrt{1 + u_{max}^2}}{T}} (1 + \delta f_{1bulk} + \delta f_{1shear})$$

- An **example** for the correction terms:
- δf_{Ibulk} will be neglected for simplicity

Sudden Freeze-Out Approximation

• Sharp transition between fluid and particles: Define a hyper-surface Σ on which the transition is expected to take place; at each point of Σ free streaming particles are emitted according to the thermal distributions in the rest frame of the fluid



 \rightarrow Equilibrium thermal distribution f_{a} (Maxwell-Boltzmann-distribution)

• Remark: (Initial) fluctuations are ignored

Decoupling from an ideal fluid

• Computation of the Cooper-Frye integral via method of steepest descent: [1]

• Results:

Two "kinds" of particles: slow and fast particles depending on the tranverse momentum p_{t}

 $p_t < m_t \overline{u}_{max}$ slow particles $p_t > m_t \overline{u}_{max}$ fast particles

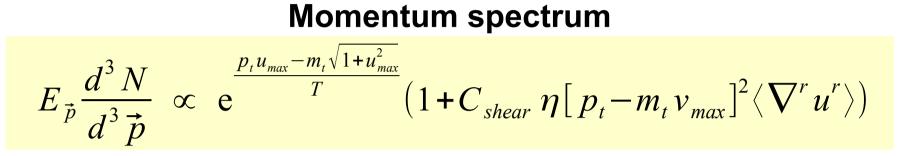
with \overline{u}_{max} the maximum value for $|\boldsymbol{u}_t|$ with a fixed rapidity and azimuth

• Stronger constraints on p_{r} are needed to ensure validity of the approximation

From an ideal fluid to a dissipative fluid

• δf_{Ishear} remains

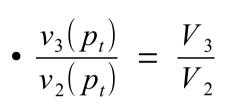
 \rightarrow Only the $\pi^{rr}(x)$ -term contributes: $\delta f_{1 \text{shear}} = C_{shear} \eta [p_t - m_t v_{max}]^2 \langle \nabla^r u^r \rangle$



 $v_2(p_t) = V_2[I(p_t) - D(p_t)]$ $v_3(p_t) = V_3[I(p_t) - D(p_t)] + o(V_1V_2)$ $v_4(p_t) = V_4[I(p_t) - D(p_t)] + V_2^2[\frac{I(p_t)^2}{2} - I(p_t)D(p_t)]$ $v_5(p_t) = V_2 V_3 [I(p_t) - D(p_t)] + o(V_5)$

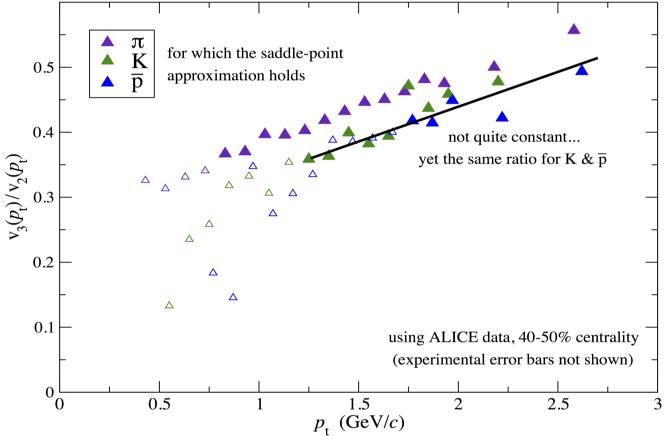
 $D(p_t) = \frac{m_t \overline{v}_{max}}{p_t - m_t \overline{v}_{max}} \frac{2}{1 + \overline{u}_{max}^2} h(\frac{p_t - m_t \overline{v}_{max}}{T})$ $h(\xi) = \frac{g(\xi)}{1+g(\xi)}$ $g(\xi) = \xi^2 \eta C_{shear}(x_{s.p.}) \langle \nabla^r u^r \rangle (x_{s.p.})$

 $\rightarrow D(p_{t})$ comes from the dissipative effects



Dissipative effects [3]

The ratio between v_2 and v_3 should be a constant, in fact, if $V_2 = V_3$ and all other $V_n = 0$, then v_2 and v_{3} should not be any different and the ratio should be equal to one



• Four-velocity $u_{\mu}(x)$ is changed

 $\rightarrow u_{\mu}(x)$ has to be a solution of the relativistic Navier-Stokes or second-order equations \rightarrow This fact can be neglected here, because the focus is on corrections arising at freeze-out

• f_0 in the Cooper-Frye formula receives correction terms, depending on the dissipative effects: [2] \rightarrow First-order corrections δf_i : shear and bulk viscosity

$$f_{0} \rightarrow f_{0} + \delta f_{1shear} + \delta f_{1bulk}$$

$$\rightarrow \delta f_{1shear} = C_{shear}(p \cdot u(x)) \pi^{\mu\nu}(x) p_{\mu} p_{\nu} f_{0}(p \cdot u(x))$$

$$\rightarrow \delta f_{1bulk} = C_{bulk}(p \cdot u(x), p^{2}) \Pi(x) f_{0}(p \cdot u(x))$$

 \rightarrow Second-order corrections δf_2 : only partially known

• C_{shear} and C_{hulk} : not really known \rightarrow Different options for possible models (e.g. Grad prescription)

Decoupling from a dissipative fluid

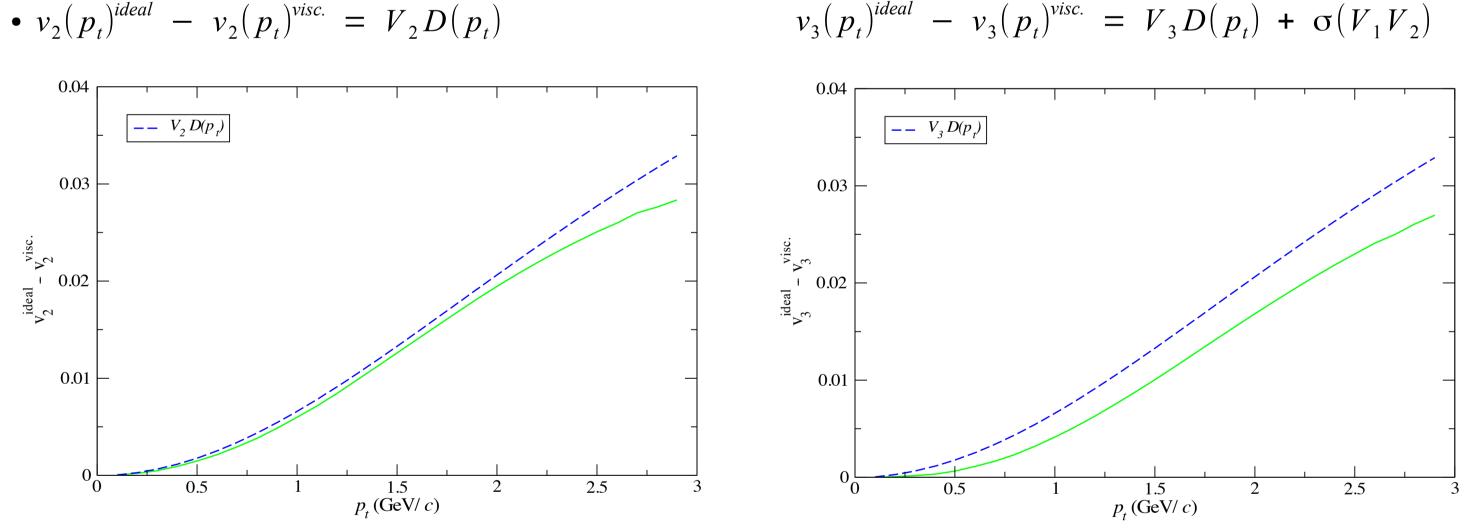
• Idea:

Slow Particles • Emitted from point x, where $u_{\mu} = \frac{p_{\mu}}{m}$

• The shear tensor must fullfil the Landau relation: $\pi^{\mu\nu}(x)u_{\mu}(x) = 0$

Fast Particles

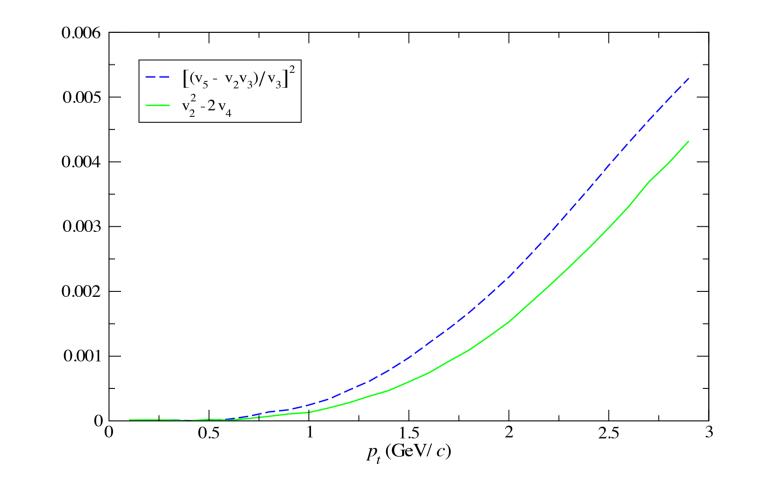
Fast particles, emitted in a given direction, all come from the same saddle point, where the fluid velocity reaches at its maximum u_{max}



For \bar{u}_{max} not too large ($\bar{u}_{max} \ll 1$), the analytic solution $D(p_{t})$ (blue) can be compared to the disspative correction calculated with a "blast wave model" ansatz (green)

$$\frac{(v_5(p_t) - v_2(p_t)v_3(p_t))^2}{v_3(p_t)^2} = V_2^2 D(p_t)^2$$
$$\frac{2v_4(p_t) - v_2(p_t)^2}{2v_4(p_t) - v_2(p_t)^2} = V_2^2 D(p_t)^2$$

- Two independent relations from which the viscous correction could be extracted \rightarrow Further results to compare with the
 - analytic calculation $D(p_{t})$



 $\rightarrow \delta f_{lshear} = 0$, since for slow particles: $p_{\mu} \propto u_{\mu}$

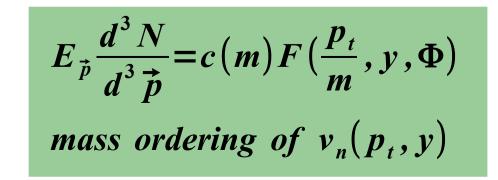
• The factor C_{hulk} is a function of $p^2 = m^2$

 \rightarrow The contribution of δf_{Ibulk} is identical for

particles with the same four-velocity u_{μ}

• Conclusion:

Same result as in the ideal case [3]



with modified *c* and *F* compared to the results for the ideal fluid [1]

• At the saddle point: $p \cdot u(x) = m_t \sqrt{1 + u_{max}}(\varphi)^2 - p_t u_{max}(\varphi)$

 $E_{\vec{p}} \frac{d^3 N}{d^3 \vec{p}} \propto e^{\frac{p_t u_{max} - m_t \sqrt{1 + u_{max}^2}}{T}}$ \rightarrow Governs the momentum spectrum:

• u_{max} dependence on the azimuth: $u_{max}(\varphi) = \overline{u}_{max}(1 + \sum 2V_n \cos(n\varphi))$

 \rightarrow Yield the "ideal" flow coefficients v_{r}

 $v_2(p_t)^{ideal} = V_2 I(p_t)$ $v_3(p_t)^{ideal} = V_3 I(p_t) + o(V_1 V_2)$ $v_4(p_t)^{ideal} = V_4 I(p_t) + V_2^2 \frac{I(p_t)^2}{2}$ $v_5(p_t)^{ideal} = V_2 V_3 I(p_t) + o(V_5)$ $I(p_t) = \frac{\overline{u}_{max}}{T} [p_t - m_t \overline{v}_{max}] \qquad \overline{v}_{max} = \frac{\overline{u}_{max}}{\sqrt{1 + \overline{z}^2}}$

Summary

• Slow particles: Viscous corrections do not change the scaling laws • Fast particles: Flow coefficients gain a viscous correction term • Flow coefficients: New relations between different flow coefficients are found

Outlook

• Other relations possible • Other freeze-out ansätze

References

[1] Nicolas Borghini, Jean-Yves Ollitrault; Physics Letters B 642 (2006) 227-231 [2] Derek Teaney; Physical Review C 68, 034913 (2003) [3] Christian Lang, Nicolas Borghini; arXiv:1312.7763