Eötvös bounds on coupling of fundamental parameters to gravity

0805.0318 [hep-ph]

Thomas Dent

Institut für Theoretische Physik, University of Heidelberg

3. Kosmologietag, IBZ, Bielefeld 2008
Introduction

Astrophysical measurements

Atomic clocks and LPI

Gravitational effects of variation

Theory and bounds part 1

Theory part 2

Reviews, previous work:

- V. Flambaum and E. Shuryak, “How changing physical constants and violation of local position invariance may occur?”, physics/0701220
- D. Shaw, ”Detecting seasonal changes in the fundamental constants”, gr-qc/0702090
- TD, “Composition-dependent forces from varying m_p/m_e”, JHEP hep-ph/0608067
Motivation

Constancy of “constants” (couplings, mass ratios) is an assumption of particle physics and GR

Should be tested!

- Does it make sense to consider variation?
 Different fundamental “constants” at different points in spacetime breaks Einstein equivalence principle (Local Position Invariance)

- Generally covariant theories with “varying constants” can easily be constructed
 GR plus scalar field weakly coupled to radiation and matter

- Doing physics with “varying constants”
 1. Look for signals and set limits
 2. Look for related effects (WEP violation)
 3. A nonzero signal can rule out unified theories, test models of quintessence etc.

- Consider many probes: different z, different environments, spatial variation? ...
Motivation

Constancy of “constants” (couplings, mass ratios) is an assumption of particle physics and GR

Should be tested!

- Does it make sense to consider variation?
 Different fundamental “constants” at different points in spacetime breaks Einstein equivalence principle (Local Position Invariance)

- Generally covariant theories with “varying constants” can easily be constructed
 GR plus scalar field weakly coupled to radiation and matter

- Doing physics with “varying constants”
 1. Look for signals and set limits
 2. Look for related effects (WEP violation)
 3. A nonzero signal can rule out unified theories, test models of quintessence etc.

- Consider many probes: different z, different environments, spatial variation? . . .

Motivation

Constancy of “constants” (couplings, mass ratios) is an assumption of particle physics and GR
Should be tested!

- Does it make sense to consider variation?
 Different fundamental “constants” at different points in spacetime breaks Einstein equivalence principle (Local Position Invariance)

- Generally covariant theories with “varying constants” can easily be constructed
 GR plus scalar field weakly coupled to radiation and matter

- Doing physics with “varying constants”
 1. Look for signals and set limits
 2. Look for related effects (WEP violation)
 3. A nonzero signal can rule out unified theories, test models of quintessence etc.

- Consider many probes: different z, different environments, spatial variation? …
Alpha: measurement methods

\[\omega_z = \omega_0 + q \left[\left(\frac{\alpha_z}{\alpha} \right)^2 - 1 \right] \]

“Many-multiplet” method: different species with different \(q \) coefficients enhance sensitivity (Murphy et al., astro-ph/0209488)

Latest published result, 143 systems (astro-ph/0310318)

\[\frac{\Delta \alpha}{\alpha} = (-0.57 \pm 0.11) \cdot 10^{-5}, \quad 0.2 < z_{\text{abs}} < 4.2 \]
Alpha: measurement methods

QSO absorption system, \(z = z_{\text{abs}} \)

\[
\omega_z = \omega_0 + q \left[\left(\frac{\alpha_z}{\alpha} \right)^2 - 1 \right]
\]

“Many-multiplet” method: different species with different \(q \) coefficients enhance sensitivity (Murphy et al., astro-ph/0209488)

Latest published result, 143 systems (astro-ph/0310318)

\[
\frac{\Delta \alpha}{\alpha} = (-0.57 \pm 0.11) \cdot 10^{-5}, \quad 0.2 < z_{\text{abs}} < 4.2
\]
Alpha data

Fractional look–back time

Still controversial, spectra still being analyzed...
A new mu?

\[\mu \equiv \frac{m_p}{m_e} \]

Vibro-rotational transitions of molecular hydrogen H\textsubscript{2}, different dependences on reduced mass

\[
2005 : \frac{\Delta \mu}{\mu} = (3.05 \pm 0.75) \cdot 10^{-5} \text{ (A)}, \quad (1.65 \pm 0.74) \cdot 10^{-5} \text{ (B)} \quad \text{Ivanchik et al.}
\]

Two different sets of lab wavelengths!

New lab measurements:

\[
\frac{\Delta \mu}{\mu} = (2.4 \pm 0.6) \cdot 10^{-5}, \quad z_{abs} = 3.02, 2.59 \quad \text{Reinhold et al. PRL 2006}
\]

Recently: NH\textsubscript{3} spectrum constraint on \(\Delta \mu/\mu\)

\[
\frac{\Delta \mu}{\mu} = (0.6 \pm 1.9) \cdot 10^{-6}, \quad z = 0.685 \quad \text{Flambaum and Kozlov, PRL 2007}
\]
A new mu?

$\mu \equiv \frac{m_p}{m_e}$

Vibro-rotational transitions of molecular hydrogen H_2, different dependences on reduced mass

$$2005 : \frac{\Delta \mu}{\mu} = (3.05 \pm 0.75) \cdot 10^{-5} \text{ (A)}, \ (1.65 \pm 0.74) \cdot 10^{-5} \text{ (B)} \quad \text{Ivanchik et al.}$$

Two different sets of lab wavelengths!

New lab measurements:

$$\frac{\Delta \mu}{\mu} = (2.4 \pm 0.6) \cdot 10^{-5}, \ z_{abs} = 3.02, \ 2.59 \quad \text{Reinhold et al. PRL 2006}$$

Recently: NH_3 spectrum constraint on $\Delta \mu/\mu$

$$\frac{\Delta \mu}{\mu} = (0.6 \pm 1.9) \cdot 10^{-6}, \ z = 0.685 \quad \text{Flambaum and Kozlov, PRL 2007}$$
Atomic clocks

Absolute frequency standard: 133Cs ground state hyperfine transition

Measure some other transition in the lab over years ⇒ bound on fundamental “constant” variations (up to variation of μ_{Cs})

Example

- Atomic hydrogen 1S-2S transition $\nu_H \propto \text{Ry}$
- Mercury electric quadrupole transition $\nu_{\text{Hg}} \propto \text{Ry} \alpha^{-3.2}$
- Caesium hyperfine transition $\nu_{\text{Cs}} \propto \text{Ry} \alpha^2 \frac{\mu_{\text{Cs}}}{\mu_B} \alpha^{0.8}$

Eliminate μ_{Cs} to obtain $\dot{\alpha}/\alpha = (-0.9 \pm 2.9) \cdot 10^{-15} \text{ y}^{-1}$, \(\text{Fischer et al. PRL 2004}\)

Update: Peik et al. physics/0611088

\[d \ln \alpha/dt = (-0.26 \pm 0.39) \times 10^{-15} \text{ y}^{-1}, \quad d \ln \mu/dt = (-1.2 \pm 2.2) \times 10^{-15} \text{ y}^{-1} \]
Atomic clocks

Absolute frequency standard: ^{133}Cs ground state hyperfine transition

Measure some other transition in the lab over years \Rightarrow bound on fundamental “constant” variations (up to variation of μ_{Cs})

Example

- Atomic hydrogen 1S-2S transition $\nu_H \propto \text{Ry}$
- Mercury electric quadrupole transition $\nu_{\text{Hg}} \propto \text{Ry}\alpha^{-3.2}$
- Caesium hyperfine transition $\nu_{\text{Cs}} \propto \text{Ry}\alpha^2 \frac{\mu_{\text{Cs}}}{\mu_B} \alpha^{0.8}$

Eliminate μ_{Cs} to obtain $\dot{\alpha}/\alpha = (-0.9 \pm 2.9) \cdot 10^{-15} \text{ y}^{-1}$ \hspace{1cm} \text{Fischer et al. PRL 2004}

Update: Peik et al. physics/0611088

$$d \ln \alpha/dt = (-0.26 \pm 0.39) \times 10^{-15} \text{ y}^{-1}, \quad d \ln \mu/dt = (-1.2 \pm 2.2) \times 10^{-15} \text{ y}^{-1}$$
Seasonal variations and coupling to gravity

Recent bounds on spatial variation from atomic clocks

Earth elliptical orbit \Rightarrow annual variation $\Delta U \simeq 3.3 \times 10^{-10}$

Consider variation of dimensionless parameters with $U \ e.g.$

$$\frac{\Delta \alpha}{\alpha} = k_\alpha \Delta U$$

Motivation: if variation occurs due to light scalar φ

$$\nabla^2 \varphi \simeq \lambda_s \rho$$

near massive source $\Rightarrow \varphi$ varies with U.
Seasonal variations and coupling to gravity

Recent bounds on *spatial* variation from atomic clocks

Earth elliptical orbit \Rightarrow annual variation $\Delta U \simeq 3.3 \times 10^{-10}$

Consider variation of dimensionless parameters with U *e.g.*

$$\frac{\Delta \alpha}{\alpha} = k_\alpha \Delta U$$

Motivation: if variation occurs due to light scalar φ

$$\nabla^2 \varphi \simeq \lambda_s \rho$$

near massive source $\Rightarrow \varphi$ *varies with* U.
Recent limits on couplings

S. Blatt et al., PRL vol. 100, 0801.1974

New Limits on Coupling of Fundamental Constants to Gravity Using 87Sr Optical Lattice Clocks

Three independent clocks measure $\nu_{\text{Sr}} = 429\,228\,004\,229\,874$ Hz over 3 years: width 2.1 Hz, agree to within 10^{-15} (fractional variation)

Relative to Cs standard definition of the second!

Use also Hg$^+$, Yb$^+$, H maser:

- $k_\alpha = (2.3 \pm 3.1) \times 10^{-6}$
- $k_\mu = (-1.1 \pm 1.7) \times 10^{-5}$
- $k_q = (-1.7 \pm 2.7) \times 10^{-5}$

$k_q \rightarrow (m_u + m_d)/\Lambda_c$

To do better: Send atomic clocks into space, increase ΔU to order 10^{-8}?

Technically difficult
Recent limits on couplings

S. Blatt et al., PRL vol. 100, 0801.1974

New Limits on Coupling of Fundamental Constants to Gravity Using 87Sr Optical Lattice Clocks

Three independent clocks measure $\nu_{\text{Sr}} = 429\,228\,004\,229\,874$ Hz over 3 years: width 2.1 Hz, agree to within 10^{-15} (fractional variation)

Relative to Cs standard definition of the second!

Use also Hg$^+$, Yb$^+$, H maser:

- $k_\alpha = (2.3 \pm 3.1) \times 10^{-6}$
- $k_\mu = (-1.1 \pm 1.7) \times 10^{-5}$
- $k_q = (-1.7 \pm 2.7) \times 10^{-5}$

$k_q \rightarrow (m_u + m_d)/\Lambda_c$

To do better: Send atomic clocks into space, increase ΔU to order 10^{-8}?

Technically difficult
LPI vs. WEP

LPI concerns \emph{non-gravitational} experiments

But variations have dynamical effect:

Mass-energy of a body M_b depends on space-time

\Rightarrow Bodies sit in a “potential” $V(x) = M_b(x)$

do not follow geodesics: extra acceleration

\[
\vec{a} = -\frac{\vec{\nabla} M}{M} \quad \Rightarrow \quad \frac{|a|}{g} = \frac{\Delta \ln M}{\Delta U}
\]

Expand M_b as function of varying parameters G_i:

\[
\Delta \ln M = \sum_i \frac{\partial \ln M}{\partial \ln G_i} \Delta \ln G_i
\]

therefore

\[
\frac{|a|}{g} = (-) \sum_i \lambda^b_i k_i \quad (k_i \equiv \Delta \ln G_i/\Delta U)
\]

define sensitivity parameter

\[
\lambda^b_i \equiv \frac{\partial \ln M_b}{\partial \ln G_i}
\]
LPI vs. WEP

LPI concerns *non-gravitational* experiments

But variations have dynamical effect:
Mass-energy of a body M_b depends on space-time
⇒ Bodies sit in a “potential” $V(x) = M_b(x)$

do not follow geodesics: extra acceleration

$$\vec{a} = -\frac{\nabla M}{M} \quad \Rightarrow \quad \frac{|a|}{g} = \frac{\Delta \ln M}{\Delta U}$$

Expand M_b as function of varying parameters G_i:

$$\Delta \ln M = \sum_i \frac{\partial \ln M}{\partial \ln G_i} \Delta \ln G_i$$

therefore

$$\frac{|a|}{g} = (-) \sum_i \lambda_i^b k_i \quad (k_i \equiv \Delta \ln G_i/\Delta U)$$

define sensitivity parameter

$$\lambda_i^b \equiv \frac{\partial \ln M_b}{\partial \ln G_i}$$
Eötvös experiment

Can we measure \vec{a}?

Same direction as \vec{g} but 10^{-5} times smaller . . . No

WEP: objects of different composition free-fall the same way

consider test bodies M_b, M_c, measure

$$\eta \equiv \frac{a_b - a_c}{g}$$

can be done to 10^{-13} precision (Schlamminger (2008) PRL)

NB bodies not freely falling, use $\vec{a}_b - \vec{a}_c$ in direction of Sun or Earth centre

(\neq vertical due to rotation)

Find:

$$\eta = \sum_i \frac{\partial \ln(M_b/M_c)}{\partial \ln G_i} k_i \equiv \sum_i \lambda_i^{b-c} k_i$$
Can we measure \vec{a}?

Same direction as \vec{g} but 10^{-5} times smaller . . . No

WEP: objects of *different composition* free-fall the same way

can be done to 10^{-13} precision *(Schlamminger (2008) PRL)*

NB bodies *not* freely falling, use $\vec{a}_b - \vec{a}_c$ in direction of Sun or Earth centre

(≠ vertical due to rotation)

Find:

$$\eta = \sum_i \frac{\partial \ln(M_b/M_c)}{\partial \ln G_i} k_i \equiv \sum_i \lambda_{b,c}^i k_i$$
Nuclear parameters

What is the mass of a body?

\[Z \text{ protons} + \text{electrons}, A - Z \text{ neutrons}, \text{nuclear binding energy (strong & electromagnetic)} \]

Consider \(\Delta \ln((M_b/Am_N)/(M_c/Am_N)) \)

\[
\frac{M}{Am_N} = 1 \left(f_p - \frac{1}{2} \right) \frac{\delta_N}{m_N} + f_p \frac{m_e}{m_N} + \frac{Z(Z-1)}{A^{4/3}} \frac{a_C}{m_N} - \frac{a_V}{m_N} + A^{-1/3} \frac{a_S}{m_N} + \cdots
\]

\((f_p = Z/A) \) with

\[
\delta_N \equiv m_n - m_p \simeq 1.29 \text{ MeV}, \quad a_C \simeq 0.7 \text{ MeV} \propto \alpha \quad a_V \simeq 16 \text{ MeV} \simeq a_S
\]

We find

\[
\Delta \ln \frac{M_b}{M_c} \simeq \left(-\frac{\delta_N}{m_N} \Delta \ln \frac{\delta_N}{m_N} + \frac{m_e}{m_N} \Delta \ln \frac{m_e}{m_N} \right) \hat{\Delta}_{b-c} f_p \\
+ \frac{a_C}{m_N} \Delta \ln \alpha \hat{\Delta}_{b-c} \frac{Z(Z-1)}{A^{4/3}} + \frac{a_S}{m_N} \Delta \ln \frac{a_S}{m_N} \hat{\Delta}_{b-c} A^{-1/3} + \cdots
\]

\(\hat{\Delta} \) means difference between bodies \(b \) and \(c \)

combine \(\delta_N \) and \(m_e \) as \(Q_n \equiv m_n - (m_p + m_e) \) with coupling \(k_{Q_n} \)
Nuclear parameters

What is the mass of a body?

\(Z \) protons + electrons, \(A - Z \) neutrons, nuclear binding energy (strong & electromagnetic)

Consider \(\Delta \ln((M_b/Am_N)/(M_c/Am_N)) \)

\[
\frac{M}{Am_N} = 1 - \left(f_p - \frac{1}{2} \right) \frac{\delta_N}{m_N} + f_p \frac{m_e}{m_N} + \frac{Z(Z-1)}{A^{4/3}} \frac{a_C}{m_N} - \frac{a_V}{m_N} + A^{-1/3} \frac{a_S}{m_N} + \ldots
\]

(\(f_p = Z/A \)) with

\[\delta_N \equiv m_n - m_p \simeq 1.29 \text{ MeV}, \quad a_C \simeq 0.7 \text{ MeV} \propto \alpha \quad a_V \simeq 16 \text{ MeV} \simeq a_S \]

We find

\[
\Delta \ln \frac{M_b}{M_c} \simeq \left(-\frac{\delta_N}{m_N} \Delta \ln \frac{\delta_N}{m_N} + \frac{m_e}{m_N} \Delta \ln \frac{m_e}{m_N} \right) \hat{\Delta}_{b-c} f_p \\
+ \frac{a_C}{m_N} \Delta \ln \alpha \frac{Z(Z-1)}{A^{4/3}} + \frac{a_S}{m_N} \Delta \ln \frac{a_S}{m_N} \hat{\Delta}_{b-c} A^{-1/3} + \ldots
\]

\(\hat{\Delta} \) means difference between bodies \(b \) and \(c \)

combine \(\delta_N \) and \(m_e \) as \(Q_n \equiv m_n - (m_p + m_e) \) with coupling \(k_{Q_n} \)
Experiments and materials

- **Schlamminger et al.** 2008: Be–Ti, \(\eta = (0.3 \pm 1.8) \times 10^{-13} \)
- **Baeßler et al.** 1999: Fe–SiO\(_2\), \(\eta = (0.5 \pm 9.4) \times 10^{-13} \)
- **Braginsky and Panov** 1972: Pt–Al, \(\eta = (-0.3 \pm 0.4) \times 10^{-12} \)

<table>
<thead>
<tr>
<th>Material</th>
<th>(A)</th>
<th>(Z)</th>
<th>(f_p - 0.5)</th>
<th>(\frac{Z(Z-1)}{A^{4/3}})</th>
<th>(A^{-1/3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be</td>
<td>9</td>
<td>4</td>
<td>-0.0556</td>
<td>0.64</td>
<td>0.481</td>
</tr>
<tr>
<td>Al</td>
<td>27</td>
<td>13</td>
<td>-0.0185</td>
<td>1.93</td>
<td>0.333</td>
</tr>
<tr>
<td>SiO(_2)</td>
<td>21.6</td>
<td>10.8</td>
<td>0</td>
<td>1.74</td>
<td>0.365</td>
</tr>
<tr>
<td>Ti</td>
<td>47.9</td>
<td>22</td>
<td>-0.042</td>
<td>2.65</td>
<td>0.275</td>
</tr>
<tr>
<td>Fe</td>
<td>56</td>
<td>26</td>
<td>-0.0357</td>
<td>3.03</td>
<td>0.261</td>
</tr>
<tr>
<td>Pt</td>
<td>195.1</td>
<td>78</td>
<td>-0.1</td>
<td>5.31</td>
<td>0.172</td>
</tr>
</tbody>
</table>
Bounds on “nuclear” couplings

Derive χ^2 as function of couplings $(k_{Qn}, k_\alpha, k_{aS})$

Project likelihood onto each direction: null bounds

\[
\{\sigma(k_{Qn}), \sigma(k_\alpha), \sigma(k_{aS})\} = \{38, 2.3, 1.0\} \times 10^{-9}
\]

May also include nuclear asymmetry energy $a_A \propto a_S$ (coupling $k_{aA} = k_{aS} = k_{nuc}$), similar results

3 orders of magnitude tighter than atomic clock bounds

Clocks killed by $\Delta U \sim 10^{-10}$, WEP affected by $a_C/m_N \sim 8 \times 10^{-4}$

Space-based WEP experiments (MICROSCOPE, STEP) may improve by 2+ orders of magnitude
Bounds on “nuclear” couplings

Derive χ^2 as function of couplings $(k_{Qn}, k_\alpha, k_{aS})$

Project likelihood onto each direction: null bounds

$$\{\sigma(k_{Qn}), \sigma(k_\alpha), \sigma(k_{aS})\} = \{38, 2.3, 1.0\} \times 10^{-9}$$

May also include nuclear asymmetry energy $a_A \propto a_S$ (coupling $k_{aA} = k_{aS} = k_{nuc}$), similar results

3 orders of magnitude tighter than atomic clock bounds

Clocks killed by $\Delta U \sim 10^{-10}$, WEP affected by $a_C/m_N \sim 8 \times 10^{-4}$

Space-based WEP experiments (MICROSCOPE, STEP) may improve by 2+ orders of magnitude
Fundamental parameters

We bounded couplings to \(Q_n/m_N = (m_n - m_p - m_e)/m_N, \alpha, a_S/m_N \)

Change basis to elementary particle physics (SM) parameters

\[
k_i = F_{ik} k'_k, \quad F_{ik} = \frac{\partial \ln G_i}{\partial \ln G'_k}
\]

parameters to consider:

- \(\alpha \) (coupling \(k'_\alpha \))
- electron mass \(m_e/\Lambda_c \) (\(k'_e \))
- light quark mass \(m_q/\Lambda_c \equiv (m_u + m_d)/2\Lambda_c \) (\(k'_q \))
- up-down mass difference \(\delta_q/\Lambda_c \equiv (m_d - m_u)/\Lambda_c \) (\(k'_{\delta q} \))
- strange quark mass \(m_s/\Lambda_c \)

normalise to the QCD strong interaction scale \(\Lambda_c \)

Use QCD (chiral perturbation theory) to find dependence of \(m_N \equiv (m_n + m_p)/2 \) and \(m_n - m_p \)

Dependence of nuclear binding energy on QCD parameters is unclear

\(\ldots \) dependence of almost everything on \(m_s/\Lambda_c \) is unclear, need to assume \(\Delta \ln (m_s/\Lambda_c) \rightarrow 0 \)
Fundamental parameters

We bounded couplings to \(Q_n/m_N = (m_n - m_p - m_e)/m_N, \alpha, a_S/m_N \)

Change basis to elementary particle physics (SM) parameters

\[
k_i = F_{ik} k'_k, \quad F_{ik} = \frac{\partial \ln G_i}{\partial \ln G'_k}
\]

parameters to consider:

- \(\alpha \) (coupling \(k'_\alpha \))
- electron mass \(m_e/\Lambda_c \) (\(k'_e \))
- light quark mass \(m_q/\Lambda_c \equiv (m_u + m_d)/2\Lambda_c \) (\(k'_q \))
- up-down mass difference \(\delta_q/\Lambda_c \equiv (m_d - m_u)/\Lambda_c \) (\(k'_{\delta q} \))
- strange quark mass \(m_s/\Lambda_c \)

normalise to the QCD strong interaction scale \(\Lambda_c \)

Use QCD (chiral perturbation theory) to find dependence of \(m_N \equiv (m_n + m_p)/2 \) and \(m_n - m_p \)

Dependence of nuclear binding energy on QCD parameters is unclear

\(\ldots \) dependence of almost everything on \(m_s/\Lambda_c \) is unclear, need to assume

\(\Delta \ln(m_s/\Lambda_c) \to 0 \)
Fundamental parameters and bounds

Deuterium binding dependence on $m_{\pi}/\Lambda_c \propto \sqrt{m_q/\Lambda_c}$ calculated in effective field theory:

$$\Delta \ln \frac{B_D}{\Lambda_c} = r \Delta \ln \frac{m_{\pi}}{\Lambda_c}, \quad -10 < r < -6$$

We estimated (TD/Stern/Wetterich 2007)

$$\frac{\partial B_i}{\partial m_{\pi}} \sim (A_i - 1) \frac{\partial B_D}{\partial m_{\pi}} = (A_i - 1) r \frac{B_D}{m_{\pi}}$$

may have error of 100% plus . . .

Transform from “nuclear” couplings (k_{Qn}, k_{α}, k_{aS}) to “fundamental” couplings ($k'_{\delta f}$, k'_{α}, k'_{q}) via F_{ik}:

$$F = \begin{pmatrix} 2.6 & -0.97 & -0.05 \\ 0 & 1 & 0 \\ 0 & 0 & -0.9 \end{pmatrix}$$

$k'_{\delta f} \equiv k'_{\delta q} - 0.25k'_{e}$ from dependence of $m_n - m_p$

Bounds

$$\{\sigma(k'_{\delta f}), \sigma(k'_{\alpha}), \sigma(k'_{q})\} = \{14, 1.7, 0.9\} \times 10^{-9}.$$
Fundamental parameters and bounds

Deuterium binding dependence on $m_\pi/\Lambda_c \propto \sqrt{m_q/\Lambda_c}$ calculated in effective field theory:

$$\Delta \ln \frac{B_D}{\Lambda_c} = r \Delta \ln \frac{m_\pi}{\Lambda_c}, \quad -10 < r < -6$$

We estimated (TD/Stern/Wetterich 2007)

$$\frac{\partial B_i}{\partial m_\pi} \sim (A_i - 1) \frac{\partial B_D}{\partial m_\pi} = (A_i - 1)r \frac{B_D}{m_\pi}$$

may have error of 100% plus...

Transform from “nuclear” couplings (k_{Qn}, k_α, k_{aS}) to “fundamental” couplings ($k '_{\delta f}, k '_{\alpha}, k '_{q}$) via F_{ik}:

$$F = \begin{pmatrix} 2.6 & -0.97 & -0.05 \\ 0 & 1 & 0 \\ 0 & 0 & -0.9 \end{pmatrix}$$

$k '_{\delta f} \equiv k '_{\delta q} - 0.25k '_e$ from dependence of $m_n - m_p$

Bounds

$$\{\sigma(k '_{\delta f}), \sigma(k '_{\alpha}), \sigma(k '_{q})\} = \{14, 1.7, 0.9\} \times 10^{-9}.$$
Outlook

Bounding couplings to scalar φ: also consider coupling to source λ_s

Done in (TD, hep-ph/0608067) for specific classes of model relating values of k_i

Not done for general k_i or including nuclear binding energy effects

With bounds on $\partial \ln G_i / \partial \varphi$ can use cosmology to determine/limit φ time evolution

\Rightarrow cosmic history of “constants”

Ongoing project with S. Stern, C. Wetterich to “unify” high-z / recent / local probes of variation
Bounding couplings to scalar φ: also consider coupling to source λ_s

Done in (TD, hep-ph/0608067) for specific classes of model relating values of k_i

Not done for general k_i or including nuclear binding energy effects

With bounds on $\partial \ln G_i / \partial \varphi$ can use cosmology to determine/limit φ time evolution

\Rightarrow cosmic history of “constants”

Ongoing project with S. Stern, C. Wetterich to “unify” high-z / recent / local probes of variation