Languages’ rhythm and language acquisition

Franck Ramus
Laboratoire de Sciences Cognitives et Psycholinguistique, Paris

Jacques Mehler, Marina Nespor, Marc Hauser
What we say to babies...

Well, Johnny, you've spilled your milk for the last time! I'll not tolerate that behavior any longer!

What they hear
Phonological bootstrapping

Explaining the acquisition of abstract properties of language:

– Find speech cues or regularities that may signal abstract properties.
– Show that these cues are perceived by infants.
– Show that these cues are actually used by infants to acquire those properties.
Speech rhythm

- Temporal organization of syllables in an utterance.
- Different languages may have different types of rhythm (Pike 1945, Abercrombie 1967, Ladefoged 1975):
  - Germanic & Slavic languages, Arabic, are said to be stress-timed;
  - Romance languages, Turkish, Yoruba, are said to be syllable-timed;
  - Japanese is said to be mora-timed.

⇒ Rhythm class hypothesis
Correlates of rhythm in the speech signal

• Hypothesis: the infant’s perception of speech is centered on vowels, i.e., infants segment speech into vowels + noise (consonants).

• A basic consonant/vowel segmentation could be enough to compute rhythm type.
Example:
“The government is planning…”
Material

- 8 languages, 4 speakers per language, and 5 sentences per speaker = 160 sentences.
- Segmentation into consonantal and vocalic intervals.
- Three variables computed for each sentence:
  - %V proportion of vocalic intervals (= 1 - %C);
  - $\Delta V$ standard deviation of vocalic interval durations within the sentence;
  - $\Delta C$ standard deviation of consonantal interval durations within the sentence;
Pairwise variability index (Grabe et al.)
Simulations of language discrimination experiments by adults. Variables $\%V$, $\Delta V$ and $\Delta C$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dut.</td>
<td>57.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fre.</td>
<td>85</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ita.</td>
<td>75</td>
<td>60</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cat.</td>
<td>90</td>
<td>80</td>
<td>57.5</td>
<td>57.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spa.</td>
<td>77.5</td>
<td>75</td>
<td>40</td>
<td>60</td>
<td>47.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jap.</td>
<td>100</td>
<td>100</td>
<td>92.5</td>
<td>90</td>
<td>80</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Pol.</td>
<td>100</td>
<td>90</td>
<td>77.5</td>
<td>80</td>
<td>60</td>
<td>60</td>
<td>100</td>
</tr>
</tbody>
</table>
Simulations of language discrimination experiments by adults. Variables %V, ΔV and ΔC

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dut.</td>
<td>57.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fre.</td>
<td>85</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ita.</td>
<td>75</td>
<td>60</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cat.</td>
<td>90</td>
<td>80</td>
<td>57.5</td>
<td>57.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spa.</td>
<td>77.5</td>
<td>75</td>
<td>40</td>
<td>60</td>
<td>47.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jap.</td>
<td>100</td>
<td>100</td>
<td>92.5</td>
<td>90</td>
<td>80</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Pol.</td>
<td>100</td>
<td>90</td>
<td>77.5</td>
<td>80</td>
<td>60</td>
<td>60</td>
<td>100</td>
</tr>
</tbody>
</table>
Evidence for speech rhythm perception by newborns

• Newborns discriminate:
  – English/Italian;
  – French/Russian;
  – English/Spanish;
  – English/Japanese;
  – English+Dutch/Spanish+Italian.

• Newborns don’t discriminate:
  – English/Dutch;
  – Catalan/Spanish.
  – English+Italian/Dutch+Spanish;

+ low-pass filtering of speech (400 Hz).
Saltanaj resynthesised speech

- Measure fundamental frequency (F0);
- Identify the phonemes and measure their duration;
- Phoneme transformation:
  - fricatives → /s/
  - vowels → /a/
  - liquids → /l/
  - plosives → /t/
  - nasals → /n/
  - glides → /j/
- Feed into voice synthesis software (MBROLA; Dutoit et al. 1996);
- Example:
  - The next local elections will take place during the winter
  - sanatstatlalatsnsjaltaattlaastjansajanta
Method

- Selection criteria
- Non-nutritive sucking
- Habituation paradigm
- 2 groups, e.g.:
  - Dutch 1, 2 → Dutch 3, 4
  - Dutch 1, 2 → Jap. 1, 2
- Rejection criteria
- Experimenter blind
Dutch/Japanese, *saltanaj* speech

![Graph showing average number of HA sucks over minutes with control and experimental groups, and statistical analysis with F(1,29) = 6.3, p = 0.018.]

F(1,29) = 6.3, p = 0.018
Dutch/Japanese, *saltanaj* speech with flat intonation

![Graph showing the average number of HA sucks over time for the control and experimental groups. The graph includes error bars indicating the variability of the data. At 50 minutes, the F(1, 37) statistic is 4.98, with a p-value of 0.03.]
Newborns are able to discriminate between different types of rhythm

So what?
Syllabic grammar

• English, Dutch, Arabic… : highly complex syllables (CCCVCC).
  Ex: « strings » [♦ ♦ ☐ ☐ ☐ ☐ ☐ ☐]

• Spanish, Italian, Yoruba… : less complex syllables (CCVC).

• Japanese, Tamil… simple syllables (CVN).
  Ex: « sphinx » → [sufinkusu]
Syllabic grammar (2)

- Principles and Parameters (Chomsky, 1981):
  - +/- Coda
  - +/- ComplexCoda
  - +/- ObligatoryOnset
  - +/- ComplexOnset

- Optimality Theory (Prince & Smolensky, 1993):
  - Onset
  - NoCoda
  - NoComplexOnset
  - NoComplexCoda
  - Fill
  - Parse
Correlation between rhythm and syllabic structure

- Stress-timed languages $\Leftrightarrow$ very complex syllables (CCCVCC).
- Syllable-timed languages $\Leftrightarrow$ less complex syllables (CCVC).
- Mora-timed languages $\Leftrightarrow$ simple syllables (CVN)
The role of rhythm in the acquisition of syllables

**Principles & Parameters**

<table>
<thead>
<tr>
<th>Mora-timed language</th>
<th>Optimality Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>[- Complex Onset]</td>
<td>NoComplexOnset,</td>
</tr>
<tr>
<td>[- Complex Coda]</td>
<td>NoComplexCoda &gt;&gt; Fill, Parse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Syllable-timed language</th>
</tr>
</thead>
<tbody>
<tr>
<td>[+ Coda]</td>
</tr>
<tr>
<td>[+ Complex Onset]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stress-timed language</th>
</tr>
</thead>
<tbody>
<tr>
<td>[+ Coda]</td>
</tr>
<tr>
<td>[+ Complex Onset]</td>
</tr>
<tr>
<td>[+ Complex Coda]</td>
</tr>
</tbody>
</table>
Language-specificity

The capacity to process speech rhythm:

– has evolved specifically for the purpose of perceiving speech and acquiring a language?

Or:

– is attributable to the general properties of our auditory system?
Dutch/Japanese, *saltanaj* speech

![Graph showing the average number of HA sucks over minutes for control and experimental groups. The graph includes two lines: one for control group (dashed line) and one for experimental group (solid line). The graph shows an increase in average number of HA sucks for the experimental group compared to the control group. At the bottom of the graph, it is stated: F(1,29) = 6.3, p = 0.018.]
Dutch/Japanese, *saltanaj speech* backwards

Forward/backward interaction: $F(1,59)=3.56$, $p=0.06$
Habituation procedure with tamarins

- 13 tamarins;
- each tamarin in 4 conditions: group X (forward, backward);
- behavioural measure: orientation towards the loudspeaker.
Tamarins
Dutch/Japanese discrimination
natural speech

A

<table>
<thead>
<tr>
<th>forward</th>
<th>backward</th>
</tr>
</thead>
<tbody>
<tr>
<td>language</td>
<td>speaker</td>
</tr>
<tr>
<td>language</td>
<td>speaker</td>
</tr>
</tbody>
</table>

* indicates significant difference
Tamarins

Dutch/Japanese discrimination

*saltanaj* stimuli

---

**B**

<table>
<thead>
<tr>
<th></th>
<th>forward</th>
<th>backward</th>
</tr>
</thead>
<tbody>
<tr>
<td>language</td>
<td></td>
<td></td>
</tr>
<tr>
<td>speaker</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>language</td>
<td></td>
<td></td>
</tr>
<tr>
<td>speaker</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

*Number of tamarins responding*
Tamarins
Dutch/Japanese discrimination pooled analysis

![Graph showing discrimination results for language and speaker conditions in forward and backward conditions.](image)
What we say to babies...

Well, Johnny, you've spilled your milk for the last time! I'll not tolerate that behavior any longer!

What they hear

+ CODA
+ COMPLEX - CODA
+ COMPLEX - ONSET
What we say to babies...

Well, Johnny, you've spilled your milk for the last time! I'll not tolerate that behavior any longer!

What monkeys hear

What on earth does +COMPLEXCODA mean?