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Abstract. We consider fully discrete �nite element discretization of the stochastic total
variation �ow equation (STVF) with linear multiplicative noise which was previously
proposed in [4]. Due to lack of a discrete counterpart of stronger a priori estimates in
higher spatial dimensions the original convergence analysis of the numerical scheme was
limited to one spatial dimension, cf. [5]. In this paper we generalize the convergence proof
to higher dimensions.

1. Introduction

We study the convergence of numerical approximation of the stochastic total variation
�ow (STVF) equation

dX = div

(
∇X
|∇X|

)
dt− λ(X − g) dt+X dW, in (0, T )×O,

X = 0 on (0, T )× ∂O,(1)

X(0) = x0 in O,

where O ∈ Rd, d ≥ 1, is a bounded, convex polyhedral domain, λ ≥ 0, T > 0 are constants
and x0, g ∈ L2. For simplicity we take W to be a one dimensional real-valued Wiener
process.
We adopt the approach from [4] and construct a fully discrete approximation scheme

(cf. (40) below) of (1) using a regularization approach. Given a regularization parameter
ε > 0 we consider the following regularized problem

dXε = div

(
∇Xε√

|∇Xε|2 + ε2

)
dt− λ(Xε − g) dt+Xε dW in (0, T )×O,

Xε = 0 on (0, T )× ∂O,(2)

Xε(0) = x0 in O .

Equations (1), (2), respectively, admit unique solutions in the sense of stochastic varia-
tional inequalities, see [2], [4], [3]. Throughout the paper we refer to the solutions of (1),
(2) as SVI solutions, see De�nition 3.1 below. The �rst numerical approximation of (1) was
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constructed in [4] and its convergence was shown by considering the full discretization of
the regularized problem (2) as an intermediate step. The convergence proof of the numer-
ical approximation in [4] relies on the discrete counterpart of a priori estimates in stronger
norm (cf. Lemma 3.2 below), which are so-far restricted to spatial dimension d = 1, cf. [5].
The recent work [3] shows convergence of numerical approximation with a random walk
representation of the noise to probabilistically weak SVI solutions of (1). The numerical
analysis in [3] is valid in higher spatial dimensions d ≥ 1, but does not cover the case of
linear multiplicative noise, except for d = 1. In this work we show convergence of the nu-
merical approximation of the stochastic total variation �ow (1) with linear multiplicative
noise in spatial dimension d > 1.
The paper is organized as follows. In Section 2 we introduce the notation and state some

auxiliary results. The existence of a unique SVI solution of the regularized stochastic TV
�ow (2) and its convergence towards a unique SVI solution of (1) is discussed in Section 3.
In Section 4 we introduce a time semi-discrete numerical scheme for the regularizared
problem (3) below and show its convergence to the variational solution of (3) for initial
data with higher regularity. Finally, in Section 5 we show the convergence of the fully
discrete �nite element scheme for the regularizared problem (2) and show its convergence
to the SVI solution of (1).

2. Notation and preliminaries

Throughout the paper by C we denote a generic positive constant that may change from
line to line. By Lp := Lp(O) for 1 ≤ p ≤ ∞ we denote the standard spaces of p-th order
integrable functions on O; we use ‖ · ‖ = ‖ · ‖L2 for the L2-norm and (·, ·) = (·, ·)L2 for the
L2-inner product. For k, p ∈ N we denote the usual Sobolev space on O by (Wp,k, ‖ ·‖Wp,k);
for p = 2 we use Hk := W2,k. Furthermore H1

0 stands for the H1 space with zero trace on
∂O with its dual denoted as H−1 and we set 〈·, ·〉 = 〈·, ·〉H−1×H1

0
, where 〈·, ·〉H−1×H1

0
is the

duality pairing between H1
0 and H−1.

For u ∈ H1
0 we consider the energy functional

Jε,λ(u) =

∫
O

√
|∇u|2 + ε2 dx +

λ

2

∫
O
|u− g|2 dx ,

With a slight abuse of notation we set Jε := Jε,0 if λ = 0 and Jλ := J0,λ if ε = 0.
Next, we state basic de�nitions related to the functions of bounded variation.

De�nition 2.1. A function u ∈ L1(O) is called a function of bounded variation, if its total
variation ∫

O
|∇u| dx := sup

{
−
∫
O
u div v dx; v ∈ C∞0 (O,Rd), ‖v‖L∞ ≤ 1

}
,

is �nite. The space of functions of bounded variation is denoted by BV (O).
Furthermore, for u ∈ BV (O) we set∫
O

√
|∇u|2 + ε2 dx := sup

{∫
O

(
− u div v + ε

√
1− |v|2

)
dx; v ∈ C∞0 (O,Rd), ‖v‖L∞ ≤ 1

}
.
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3. The continuous problem

In this section we construct a unique SVI solution of (1) (see De�nition 3.1 below) via a
two-level regularization procedure. Given the data x0 ∈ L2(Ω,F0;L2), g ∈ L2 we consider
an H1

0-approximating sequences {xn0}n∈N ⊂ L2(Ω,F0;H1
0), {gn}n∈N ⊂ H1

0, s.t. xn0 → x0,
gn → g in L2(Ω,F0;L2) for n→∞, respectively. For δ > 0 we introduce a regularization
of (2) as

dXδ
n =δ∆Xδ

n + div

(
∇Xδ

n√
|∇Xδ

n|2 + ε2

)
dt− λ(Xδ

n − gn) dt+Xδ
n dW (t),(3)

Xδ
n(0) =xn0 .

We de�ne the operator Aδ : H1
0 → H−1 as

〈Aδu, v〉H−1×H1
0

= δ (∇u,∇v) +

(
∇u√

|∇u|2 + ε2
,∇v

)
+ λ (u− gn, v) ∀u, v ∈ H1

0,(4)

and note that (3) can be equivalently formulated as

dXδ
n + AδXδ

n dt = Xδ
n dW (t) ,(5)

Xδ
n(0) = xn0 .

The operator Aδ : H1
0 → H−1 is demicontinuos and satis�es (cf. [8, Remark 4.1.1])

〈Aδ(u)− Aδ(v), u− v〉H−1×H1
0
≥ δ‖u− v‖2

H1
0

+ λ‖u− v‖2, ∀u, v ∈ H1
0,(6)

‖Aδ(u)‖H−1 ≤ C(δ, λ, ‖gn‖)(‖u‖H1
0

+ 1), ∀u ∈ H1
0.(7)

We recall that the convexity of the function
√
| · |2 + ε2 implies the monotonicity property(

∇X√
|∇X|2 + ε2

− ∇Y√
|∇Y |2 + ε2

,∇(X − Y )

)

=

(
∇X√

|∇X|2 + ε2
,∇(X − Y )

)
+

(
∇Y√

|∇Y |2 + ε2
,∇(Y −X)

)
(8)

≥ Jε(X)− Jε(Y ) + Jε(Y )− Jε(X) = 0.

The well-posedness of the regularized problem (3) follows from standard theory of mono-
tone SPDEs, see for instance [8, Chapter 4] and [4].

Lemma 3.1. For any ε, δ > 0 and xn0 ∈ L2(Ω,F0;H1
0), gn ∈ H1

0 there exists a unique
variational solution Xδ

n ∈ L2(Ω;C([0, T ];L2)) of (3). Furthermore, there exists a constant
C ≡ C(T ) > 0 such that the following estimate holds

E

[
sup
t∈[0,T ]

‖Xδ
n(t)‖2

]
≤ C(E

[
‖xn0‖2

]
+ ‖gn‖2).
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We recall that in addition to the above L2-estimate, the solution of the regularized
equation (3) satis�es the following stronger a priori estimate, see [4, Lemma 3.2].

Lemma 3.2. Let xn0 ∈ L2(Ω,F0;H1
0), gn ∈ H1

0. There exists a constant C ≡ C(T ) such
that for any ε, δ > 0 the corresponding variational solution Xδ

n of (3) satis�es

E

[
sup
t∈[0,T ]

‖∇Xδ
n(t)‖2 + δ

∫ T

0

‖∆Xδ
n(t)‖2 dt

]
≤ C

(
E
[
‖xn0‖2

H1
0

]
+ ‖gn‖2

H1
0

)
.(9)

We consider the following functionals

J̄ε,λ(u) =

{
Jε,λ(u) +

∫
∂O |γ0(u)| dHn−1 for u ∈ BV (O) ∩ L2(O),

+∞ for u ∈ BV (O) \ L2(O),

and (for ε = 0)

J̄λ(u) =

{
Jλ(u) +

∫
∂O |γ0(u)| dHn−1 for u ∈ BV (O) ∩ L2(O),

+∞ for u ∈ BV (O) \ L2(O),

where γ0(u) is the trace of u on the boundary and dHn−1 is the Hausdor� measure. The
functionals J̄ε,λ and J̄λ are both convex and lower semicontinuous on L2 and the lower
semicontinuous hulls of J̄ε,λ|H1

0
and J̄λ|H1

0
, respectively, cf. [1, Proposition 11.3.2].

As in [4] we interpret (1), (2) as stochastic variational inequalities.

De�nition 3.1. Let 0 < T <∞, ε ∈ [0, 1] and x0 ∈ L2(Ω,F0;L2) and g ∈ L2. Then an Ft-
adapted stochastic process Xε ∈ L2(Ω;C([0, T ];L2))∩L1(Ω;L1((0, T );BV (O))) (denoted by
X ∈ L2(Ω;C([0, T ];L2)) ∩ L1(Ω;L1((0, T );BV (O))) for ε = 0) is called a SVI solution of
(2) (or (1) if ε = 0) if Xε(0) = x0 (X(0) = x0), and for each (Ft)-progressively measurable
process G ∈ L2(Ω × (0, T ),L2) and for each (Ft)-adapted L2-valued process Z with P-a.s.
continuous sample paths, s.t, Z ∈ L2(Ω× (0, T );H1

0), which satisfy the equation

dZ(t) = −G(t) dt+ Z(t) dW (t), t ∈ [0, T ],(10)

it holds for ε ∈ (0, 1] that

1

2
E
[
‖Xε(t)− Z(t)‖2

]
+ E

[∫ t

0

J̄ε,λ(Xε(s)) ds

]
≤ 1

2
E
[
‖x0 − Z(0)‖2

]
+ E

[∫ t

0

J̄ε,λ(Z(s)) ds

]
(11)

+
1

2
E
[∫ t

0

‖Xε(s)− Z(s)‖2 ds

]
+

1

2
E
[∫ t

0

(Xε(s)− Z(s), G) ds

]
,
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and analogously for ε = 0 it holds that

1

2
E
[
‖X(t)− Z(t)‖2

]
+ E

[∫ t

0

J̄λ(X(s)) ds

]
≤ 1

2
E
[
‖x0 − Z(0)‖2

]
+ E

[∫ t

0

J̄λ(Z(s)) ds

]
(12)

+
1

2
E
[∫ t

0

‖X(s)− Z(s)‖2 ds

]
+

1

2
E
[∫ t

0

(X(s)− Z(s), G) ds

]
.

The next theorem shows that the solutions of the regularized problem (3) converge to the
SVI solution of (1) for ε, n → ∞, δ → 0; the proof of the theorem follows as [4, Theorem
3.2].

Theorem 3.1. Let 0 < T < ∞ and x0 ∈ L2(Ω,F0;L2), g ∈ L2 be �xed and consider H1
0-

approximating sequences {xn0}n∈N ⊂ L2(Ω,F0;H1
0), {gn}n∈N ⊂ H1

0, s.t. x
n
0 → x0, g

n → g in
L2(Ω,F0;L2) for n → ∞. Let {Xδ

n}δ>0 be the variational solutions of (3) associated with
xn0 , g

n, ε ∈ (0, 1] and δ > 0. Then Xδ
n converges to the unique SVI variational solution X

of (1) in L2(Ω;C([0, T ];L2)) for ε→ 0, n→∞, δ → 0, i.e.,

lim
ε→0

lim
n→∞

lim
δ→0

E

[
sup
t∈[0,T ]

‖Xδ
n(t)−X(t)‖2

]
= 0.(13)

4. Semi-discretization in time

For N ∈ N we consider a partition of the time interval ti = iτ for i = 0, . . . , N with the
time-step τ = T/N , and denote the discrete Wiener increments as ∆iW = W (ti)−W (ti−1).
The implicit time-discrete approximation of (3) is de�ned as follows: set X0

δ,n = xn0 and

determine X i
δ,n ∈ H1

0, i = 1, . . . , N as the solution of

(
X i
δ,n,Φ

)
=
(
X i−1
δ,n ,Φ

)
− τδ

(
∇X i

δ,n,∇Φ
)
− τ

 ∇X i
δ,n√

|∇X i
δ,n|2 + ε2

,∇Φ

(14)

− τλ
(
X i
δ,n − gn,Φ

)
+
(
X i−1
δ,n ,Φ

)
∆iW ∀Φ ∈ H1

0.

The existence, uniqueness and measurability of {X i
δ,n}Ni=1 can be shown via �nite dimen-

sional Galerkin approximation; we summarize the main steps below:

• consider a �nite dimensional subspace Vm and the corresponding Galerkin approx-
imation X i

δ,n,m ∈ Vm of the solution X i
δ,n of (14);

• proceed by induction: assuming that an Fti−1
-measurable solution X i−1

δ,n,m ∈ Vm

exists, the existence of an Fti-measurable solution X i
δ,n,m follows by Brouwer's �xed

point theorem and the uniqueness by the monotonicity property (8), cf. [4, Lemma
4.3];
• for any m ∈ N the Galerkin approximation {X i

δ,n,m}ni=1 satis�es the same a priori
estimates as in Lemma 4.1 below;
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• by the (uniform in m) a priori estimates it holds that X i
δ,n,m ⇀ X i

δ,n for m → ∞.

Furthermore, by the monotonicity (8) it follows that the limit X i
δ,n is unique and

satis�es (14), cf., Lemma 4.2 below.

In the next lemma we state the stability properties of the time-discrete solution of the
scheme (14) which are discrete analogues of estimates in Lemma 3.1 and Lemma 3.2. Later
on, we will consider sequences {xn0}n∈N, {gn}n∈N which are uniformly bounded in L2 but
not in H1

0. Hence, in the following we suppress the dependence of the constants on the
data in (15) but not in (16).

Lemma 4.1. Let xn0 ∈ L2(Ω,F0;H1
0) and gn ∈ H1

0 be given. Then there exists a constant
C ≡ C(E [‖xn0‖L2 ] , ‖gn‖L2) > 0 such that for any τ > 0 the solution of scheme (14) satis�es

max
i=1,...,N

E
[
‖X i

δ,n‖2
]

+
1

4
E

[
N∑
k=1

‖Xk
δ,n −Xk−1

δ,n ‖
2

]

+τE

[
N∑
k=1

Jε(Xk
δ,n)

]
+
τλ

2
E

[
N∑
k=1

‖Xk
δ,n‖2

]
≤ C ,(15)

and a constant Cn ≡ C(E[‖xn0‖H1
0
], ‖gn‖H1

0
) > 0 such that for any τ > 0

max
i=1,...,N

E
[
‖∇X i

δ,n‖2
]

+ E

[
N∑
k=1

‖∇(Xk
δ,n −Xk−1

δ,n )‖2

]
+ τδE

[
N∑
k=1

‖∆Xk
δ,n‖2

]
≤ Cn.(16)

Proof. We set Φ = X i
δ,n (14) and use the identity 2(a− b)a = a2 − b2 + (a− b)2 to get for

i = 1, . . . , N

1

2
‖X i

δ,n‖2 +
1

2
‖X i

δ,n −X i−1
δ,n ‖

2 + τδ‖∇X i
δ,n‖2 + τ

 ∇X i
δ,n√

|∇X i
δ,n|2 + ε2

,∇X i
δ,n


=

1

2
‖X i−1

δ,n ‖
2 − τλ

(
‖X i

δ,n‖2 −
(
gn, X i

δ,n

))
+
(
X i−1
δ,n , X

i
δ,n

)
∆iW.(17)

We take expectation in (17) and use the properties of the Wiener increments E [∆iW ] = 0,
E [|∆iW |2] = τ and the independence of ∆iW and X i−1

δ,n to estimate the stochastic term as

E
[(
X i−1
δ,n , X

i
δ,n

)
∆iW

]
= E

[(
X i−1
δ,n , X

i
δ,n −X i−1

δ,n

)
∆iW

]
+ E

[(
X i−1
δ,n , X

i−1
δ,n

)
∆iW

]
≤E

[
1

4
‖X i−1

δ,n −X
i
δ,n‖2 + ‖X i−1

δ,n ‖
2|∆iW |2

]
+ E

[
‖X i−1

δ,n ‖
2
]
E [∆iW ]

=
1

4
E
[
‖X i

δ,n −X i−1
δ,n ‖

2
]

+ τE
[
‖X i−1

δ,n ‖
2
]
.
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From (17) by the convexity of Jε and using Jε(0) = ε|O| it follows that

1

2
E
[
‖X i

δ,n‖2
]

+
1

4
E
[
‖X i

δ,n −X i−1
δ,n ‖

2
]

+
τλ

2
E
[
‖X i

δ,n‖2
]

+ τδ‖∇X i
δ,n‖2 + τE

[
Jε(X i

δ,n)
]

≤τε|O|+ 1

2
E
[
‖X i−1

δ,n ‖
2
]

+ τE
[
‖X i−1

δ,n ‖
2
]

+ τλ‖gn‖2 .

We sum up the above inequality for k = 1, . . . , i and obtain

1

2
E
[
‖X i

δ,n‖2
]

+
1

4
E

[
i∑

k=1

‖Xk
δ,n −Xk−1

δ,n ‖
2

]
+
τλ

2
E

[
i∑

k=1

‖Xk
δ,n‖2

]

+τδE

[
i∑

k=1

‖∇Xk
δ,n‖

]
+ τE

[
i∑

k=1

Jε(Xk
δ,n)

]
(18)

≤Tε|O|+ 1

2
E
[
‖xn0‖2

]
+ Tλ‖gn‖2 + τE

[
i∑

k=1

‖Xk−1
δ,n ‖

2

]
.

Then (15) follows from (18) after an application of the discrete Gronwall lemma.
To show the estimate (16) we proceed formally, the calculations can be made rigorous

via �nite dimensional Galerkin approximation, cf. [4, Lemma 3.2]. We set Φ = −∆X i
δ,n in

(14), use integration by parts and proceed analogously to the �rst part of the proof.
As in the proof of [4, Lemma 3.2] we deduce that ∇X i

δ,n√
|∇X i

δ,n|2 + ε2
,∇(−∆X i

δ,n)

 ≥ 0.(19)

Hence, we neglect the above term and conclude that

1

2
E
[
‖∇X i

δ,n‖2
]

+
1

4
E

[
i∑

k=1

‖∇(Xk
ε,n −Xk−1

ε,n )‖2

]
+
τλ

2
E

[
i∑

k=1

‖∇Xk
ε,n‖2

]

+ τδE

[
i∑

k=1

‖∆Xk
δ,n‖

]
≤ 1

2
E
[
‖∇xn0‖2

]
+ Tλ‖∇gn‖2 + τE

[
i∑

k=1

‖∇Xk−1
ε,n ‖2

]
.

Estimate (16) then follows after an application of the discrete Gronwall lemma. �

Remark 4.1. The proof of the convergence of the numerical approximation given in [4]
relies on the stronger a priori estimate (16). The above proof of the estimate (16) requires
property (19) to hold. So far, the proof of the spatially discrete counterpart of the estimate
(19) is restricted to spatial dimension d = 1 [5, Lemma 3.1]. In the proof of the convergence
of the fully discrete numerical approximation below we circumvent the lack of a (rigorous)
discrete counterpart of (19) for d > 1 by considering the time-discrete problem (14) as an
intermediate step.
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We de�ne piecewise constant time-interpolants of the numerical solution {X i
δ,n}Ni=0 of

(14) for t ∈ [0, T ] as

X
δ,n

τ (t) = X i
δ,n if t ∈ (ti−1, ti](20)

and

X
δ,n

τ− (t) = X i−1
δ,n if t ∈ [ti−1, ti) .(21)

We note that (14) can be reformulated as(
X
δ,n

τ (t),Φ
)

+

〈∫ θ+(t)

0

AδX
δ,n

τ (s) ds,Φ

〉

=
(
X0
ε,n,Φ

)
+

(∫ θ+(t)

0

X
δ,n

τ− (s) dW (s),Φ

)
for t ∈ [0, T ], Φ ∈ H1

0,(22)

where θ+(0) = 0 and θ+(t) = ti if t ∈ (ti−1, ti].
Estimates (15), (16) imply the bounds

sup
t∈[0,T ]

E
[
‖Xδ,n

τ (t)‖2
]
≤ C, sup

t∈[0,T ]

E
[
‖Xδ,n

τ− (t)‖2
]
≤ C,(23)

δE
[∫ T

0

‖∇Xδ,n

τ (s)‖2 ds

]
≤ C.

Furthermore, (23) and (7) imply

E
[∫ T

0

‖AδXδ,n

τ (s)‖2
H−1 ds

]
≤ C.(24)

The estimates in (23) for �xed n ∈ N, ε, δ > 0 imply the existence of a subsequence, still de-

noted by {Xδ,n

τ }τ>0, and a Y ∈ L2(Ω×(0, T );L2)∩L2(Ω×(0, T );H1
0)∩L∞((0, T );L2(Ω;L2),

s.t., for τ → 0

X
δ,n

τ ⇀ Y in L2(Ω× (0, T );L2),

X
δ,n

τ ⇀ Y in L2(Ω× (0, T );H1
0),(25)

X
δ,n

τ ⇀∗ Y in L∞((0, T );L2(Ω;L2)).

In addition, there exists ν ∈ L2(Ω;L2) such that X
δ,n

τ (T ) ⇀ ν in L2(Ω;L2) as τ → 0 and
estimate (24) implies the existence of aδ ∈ L2(Ω× (0, T );H−1), s.t.,

AδX
δ,n

τ ⇀ aδ in L2(Ω× (0, T );H−1) for τ → 0.(26)

Furthermore, the estimates in (23) for �xed n ∈ N, ε, δ > 0 imply the existence of a

subsequence, still denoted by {Xδ,n

τ− }τ>0, and of Y − ∈ L2(Ω× (0, T );L2), s.t.,

X
δ,n

τ− ⇀ Y − in L2(Ω× (0, T );L2) for τ → 0.
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Finally, inequality (18) implies

lim
τ→0

E
[∫ T

0

‖Xδ,n

τ (s)−Xδ,n

τ− (s)‖2 ds

]
= lim

τ→0
τE

[
N∑
k=1

‖Xk
δ,n −Xk−1

δ,n ‖
2

]
≤ lim

τ→0
Cτ = 0 .

which shows that the weak limits of Y and Y − coincide.
From the above convergence properties we deduce by standard arguments, cf. [4, Lemma

4.6], that the solutions of the semi-discrete scheme (14) converge to the unique variational
solution of (3) for τ → 0.

Lemma 4.2. Let xn0 ∈ L2(Ω,F0;H1
0) and gn ∈ H1

0 be given, let ε, δ, λ > 0, n ∈ N be

�xed. Further, let Xδ
n be the unique variational solution of (3) and X

δ,n

τ , X
δ,n

τ− be the

respective time-interpolant (20), (21) of the numerical solution {X i
δ,n}Ni=1 of (14). Then

X
δ,n

τ , X
δ,n

τ− converge to Xδ
n for τ → 0 in the sense that the weak limits from (25), (26)

satisfy Y ≡ Xδ
n, a

δ ≡ AδY ≡ AδXδ
n and ν = Y (T ) ≡ Xδ

n(T ). In addition, it holds for
almost all (ω, t) ∈ Ω× (0, T ) that

Y (t) = Y (0)−
∫ t

0

AδY (s) ds+

∫ t

0

Y (s) dW (s),

and there is an L2-valued continuous modi�cation of Y (denoted again by Y ) such that for
all t ∈ [0, T ]

1

2
‖Y (t)‖2 =

1

2
‖Y (0)‖2−

∫ t

0

〈AδY (s), Y (s)〉+
1

2
‖Y (s)‖2 ds(27)

+

∫ t

0

(Y (s), Y (s)) dW (s).

The strong monotonicity property (6) of the operator Aδ implies strong convergence of
the time-discrete approximation in L2(Ω× (0, T );L2), cf. [4, Lemma 4.7].

Lemma 4.3. Let xn0 ∈ L2(Ω,F0;H1
0) and gn ∈ H1

0 be given, let ε, δ, λ > 0, n ∈ N be �xed.

Furthermore, let Xδ
n be the variational solution of (3) and X

δ,n

τ be the time-interpolants
(20) of the time-discrete solution {X i

δ,n}Ni=1 of (14). Then

lim
τ→0
‖Xδ

n −X
δ,n

τ ‖2
L2(Ω×(0,T );L2) → 0.(28)

5. Full Discretization

Given a quasi-uniform triangulation Th ofO we consider theH1
0-conforming �nite element

space of globally continuous piecewise linear functions over Th given as

Vh =
{
wh ∈ C0(O) : wh|T ∈ P1(T ) ∀T ∈ Th

}
⊂ H1

0.
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The orthogonal L2-projection Πh : H1 → Vh is de�ned as

(v − Πhv, wh) = 0 ∀wh ∈ Vh .

It is well-known, see e.g., [6], [7], that the projection operator satis�es the following inter-
polation and stability properties for ψ ∈ H1:

‖ψ − Πhψ‖ ≤ Ch‖∇ψ‖ and ‖Πhψ‖H1 ≤ C‖ψ‖H1 .(29)

For ψ ∈ H2 one has the following estimate

‖ψ − Πhψ‖+ h‖∇[ψ − Πhψ]‖ ≤ Ch2‖∇2ψ‖.(30)

By the estimate (16) we deduce from (30) that

τ
N∑
i=1

E
[
‖∇
(
X i
δ,n − ΠhX

i
δ,n

)
‖2
]
≤ Cnδ

−1h2 ,(31)

uniformly for all τ > 0.
Given H1-regular data xn0 , gn we consider the following auxiliary fully discrete numerical

scheme. Set X0
ε.n,h = Πhx

n
0 , gn,h = Πhgn, τ = T/N and determine X i

ε,n,h ∈ Vh, i = 1, . . . , N
as the solution of

(
X i
ε,n,h,Φh

)
=
(
X i−1
ε,n,h,Φh

)
− τ

 ∇X i
ε,n,h√

|∇X i
ε,n,h|2 + ε2

,∇Φh

(32)

− τλ
(
X i
ε,n,h − gn,h,Φh

)
+
(
X i−1
ε,n,h,Φh

)
∆iW ∀Φh ∈ Vh .

The existence, uniqueness and measurability of the numerical solution {X i
ε,n,h}Ni=1 follows

as in [4, Lemma 5.3].
In the next lemma we state the stability properties of the auxiliary numerical scheme

(32). The proof of the estimate is a direct counterpart of the proof of (15) and is therefore
omitted.

Lemma 5.1. Let xn0 , gn ∈ H1
0 and T > 0. Then there exists a constant C ≡ C(T ) such

that the solutions of scheme (32) satisfy for any ε, h ∈ (0, 1], N ∈ N

max
i=1,...,N

E
[
‖X i

ε,n,h‖2
]

+
1

4
E

[
N∑
k=1

‖Xk
ε,n,h −Xk−1

ε,n,h‖
2

]

+τE

[
N∑
k=1

Jε(Xk
ε,n,h)

]
+
τλ

2
E

[
N∑
k=1

‖Xk
ε,n,h‖2

]
≤ C .(33)

The next lemma provides an estimate for the di�erence between the solutions of the aux-
iliary fully discrete numerical scheme (32) and the solutions of its semi-discrete counterpart
(14).
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Lemma 5.2. Let ε > 0, δ > 0, n ∈ N be �xed. Let X i
δ,n be the solution of the semi-discrete

scheme (14) and let X i
ε,n,h be the numerical solution of the fully-discrete scheme (32). Then

the following estimate holds for 0 < τ ≤ 1
2
:

max
i=1,...,N

E
[
‖X i

δ,n −X i
ε,n,h‖2

]
≤ C

(
Cnh+ C1/2

n δ−
1
2h+ Cnδ + λ‖gn − gn,h‖2

)
.

Proof. We set Zi = X i
δ,n −X i

ε,n,h and observe the following equality

(
Zi − Zi−1,ΠhZ

i
)

=
(
Πh(Z

i − Zi−1),ΠhZ
i
)

=
1

2
‖ΠhZ

i‖2 +
1

2
‖Πh(Z

i − Zi−1)‖2 − 1

2
‖ΠhZ

i−1‖2 ,

(34)

where we used the elementary property of the orthogonal projection that (v,Πhv) =
(Πhv,Πhv).
We set Φ = Φh = Πh(X

i
δ,n − X i

ε,n,h) in (32), (14) (note ΠhX
i
ε,n,h = X i

ε,n,h) and obtain
after subtracting the respective equations and using (34)

1

2
‖ΠhZ

i‖2 +
1

2
‖Πh(Z

i − Zi−1)‖2 − 1

2
‖ΠhZ

i−1‖2

+ τ

 ∇X i
δ,n√

|∇X i
δ,n|2 + ε2

−
∇X i

ε,n,h√
|∇X i

ε,n,h|2 + ε2
,∇(X i

δ,n −X i
ε,n,h)


− τ

 ∇X i
δ,n√

|∇X i
δ,n|2 + ε2

−
∇X i

ε,n,h√
|∇X i

ε,n,h|2 + ε2
,∇(X i

δ,n − ΠhX
i
δ,n)

(35)

+ τλ
((
X i
δ,n − gn,ΠhZ

i
)
−
(
X i
ε,n,h − gn,h,ΠhZ

i
))

=
(
Zi−1,ΠhZ

i
)

∆iW + τδ
(
∆X i

δ,n, Z
i
)
.

By (8) the fourth term on the left hand side is positive and can be neglected. We estimate
the �fth term on the left hand side in (35) using | ∇·√

|∇·|2+ε2
| ≤ 1 and the Cauchy-Schwarz

inequality as  ∇X i
δ,n√

|∇X i
δ,n|2 + ε2

−
∇X i

ε,n,h√
|∇X i

ε,n,h|2 + ε2
,∇(X i

δ,n − ΠhX
i
δ,n)

(36)

≤ 2|O|
1
2‖∇(X i

δ,n − ΠhX
i
δ,n)‖ .

Using the Cauchy-Schwarz and Young inequalities the last term on the left-hand in (35)
can be estimated as(

X i
δ,n − gn,ΠhZ

i
)
−
(
X i
ε,n,h − gn,h,ΠhZ

i
)

=
(
gn,h − gn,ΠhZ

i
)

+
(
X i
δ,n −X i

ε,n,h,ΠhZ
i
)

≥ 1

2
‖ΠhZ

i‖2 − 1

2
‖gn − gn,h‖2 ,
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and the last term on the right-hand side as

δ
(
−∆X i

δ,n,ΠhZ
i
)
≤ δ2

2
‖∆X i

δ,n‖2 +
1

2
‖ΠhZ

i‖2 .

After substituting the above inequalities into (35) we obtain

1

2
‖ΠhZ

i‖2+
1

2
‖Πh(Z

i − Zi−1)‖2 − 1

2
‖ΠhZ

i−1‖2

≤
(
Zi−1,ΠhZ

i
)

∆iW + τ |O|
1
2‖∇(X i

δ,n − ΠhX
i
δ,n)‖(37)

+
λτ

2
‖gn − gn,h‖2 +

τδ2

2
‖∆X i

δ,n‖2 +
τ

2
‖ΠhZ

i‖2.

We estimate the stochastic term as

E
[(
Zi−1,ΠhZ

i
)

∆iW
]

= E
[(
Zi−1,ΠhZ

i − ΠhZ
i−1
)

∆iW +
(
Zi−1,ΠhZ

i−1
)

∆iW
]

= E
[(

ΠhZ
i−1,ΠhZ

i − ΠhZ
i−1
)

∆iW +
(
ΠhZ

i−1,ΠhZ
i−1
)

∆iW
]

≤ E
[

1

2
‖ΠhZ

i−1‖2|∆iW |2 +
1

2
‖Πh(Z

i − Zi−1)‖2

]
=
τ

2
E
[
‖ΠhZ

i−1‖2
]

+
1

2
E
[
‖Πh(Z

i − Zi−1)‖2
]
.

Hence, we obtain after taking expectation in (37) and summing over i that

1

2
E
[
‖ΠhZ

i‖2
]
≤ 1

2
E
[
‖ΠhZ

0‖2
]

+
τ

2
E

[
i∑

k=1

‖ΠhZ
k−1‖2

]

+ 2τ |O|
1
2E

[
i∑

k=1

‖∇[Xk
δ,n − ΠhX

k
δ,n]‖

]
+
τ

2
E

[
i∑

k=1

‖ΠhZ
k‖2

]
(38)

+
Tλ

2
‖gn − gn,h‖2 +

τδ2

2
E

[
i∑

k=1

‖∆X i
δ,n‖2

]
= I + II + III + IV + V + VI.

By the Cauchy-Schwartz inequality and (31) we obtain

III ≤ (T |O|)
1
2

(
i∑

k=0

τE
[
‖∇[Xk

δ,n − ΠhX
k
δ,n]‖2

]) 1
2

≤ C
(
Cnδ

−1h2
) 1

2 .(39)

Estimate (16) implies

VI ≤ Cnδ,

and since X0
ε,n,h = Πhx

n
0 and X0

δ,n = xn0 , we deduce

I =
1

2
‖ΠhX

0
δ,n −X0

ε,n,h‖2 = 0 .
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After substituting the above estimates for I, III, V I into (38), we obtain by the discrete
Gronwall lemma for su�ciently small τ (e.g. τ ≤ 1

2
) that

max
i=1,...,N

E
[
‖ΠhZ

i‖2
]
≤ C

(
λ‖gn − gn,h‖+ C1/2

n δ−
1
2h+ Cnδ

)
.

The statement of the lemma then follows from the above estimate by (29) and (16), since

E
[
‖Zi‖2

]
≤ 2E

[
‖Zi − ΠhZ

i‖2
]

+ 2E
[
‖ΠhZ

i‖2
]

= 2E
[
‖X i

δ,n − ΠhX
i
δ,n‖2

]
+ 2E

[
‖ΠhZ

i‖2
]

≤ Cnh+ 2E
[
‖ΠhZ

i‖2
]
.

�

The fully discrete numerical approximation of (2) is constructed as follows. For x0, g ∈ L2

we set X0
ε,h = Πhx0 and gh = Πhg and determine X i

ε,h, i = 1, . . . , N as the solution of:

(
X i
ε,h,Φh

)
=
(
X i−1
ε,h ,Φh

)
− τ

 ∇X i
ε,h√

|∇X i
ε,h|2 + ε2

,∇Φh

(40)

− τλ
(
X i
ε,h − gh,Φh

)
+
(
X i−1
ε,h ,Φh

)
∆iW ∀Φh ∈ Vh .

The existence, uniqueness and measurability properties of the solutions of (40) follow
analogously as for the solutions of (32).
In the next lemma we estimate the di�erence between the solutions of the fully discrete

numerical scheme (40) and the auxiliary scheme (32).

Lemma 5.3. Let x0 ∈ L2(Ω,F0;L2) and g ∈ L2 be given. Then for each n ∈ N there exists
a constant C ≡ C(T ) > 0, such that for any N ∈ N, n ∈ N, h, ε ∈ (0, 1] the following
estimate holds for the di�erence of the numerical solutions of (32) and (40):

max
i=1,...,N

E
[
‖X i

ε,n,h −X i
ε,h‖2

]
≤ C

(
E
[
‖x0 − xn0‖2

]
+ λ‖g − gn‖2

)
.

Proof. We de�ne Zi
ε = X i

ε,n,h −X i
ε,h. After subtracting (32) and (40) we get

(
Zi
ε,Φh

)
=
(
Zi−1
ε ,Φh

)
− τ

 ∇X i
ε,n,h√

|∇X i
ε,n,h|2 + ε2

−
∇X i

ε,h√
|∇X i

ε,h|2 + ε2
,∇Φh


− τλ

(
Zi
ε,Φh

)
− τλ (gh − gn,h,Φh) +

(
Zi−1
ε ,Φh

)
∆iW.

We set Φh = Zi
ε and obtain

(
Zi
ε − Zi−1

ε , Zi
ε

)
=− τ

 ∇X i
ε,n,h√

|∇X i
ε,n,h|2 + ε2

−
∇X i

ε,h√
|∇X i

ε,h|2 + ε2
,∇Zi

ε

(41)

− τλ‖Zi
ε‖2 − τλ

(
gh − gn,h, Zi

ε

)
+
(
Zi−1
ε , Zi

ε

)
∆iW.
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We rewrite the left-hand side in (41) as(
Zi
ε − Zi−1

ε , Zi−1
ε

)
=

1

2
‖Zi

ε‖2 − 1

2
‖Zi−1

ε ‖2 +
1

2
‖Zi

ε − Zi−1
ε ‖2 ,

and by the Cauchy-Schwarz and Young inequalities we estimate

τλ
(
gh − gn,h, Zi

ε

)
≤ τλ

2
‖gh − gn,h‖2 +

τλ

2
‖Zi

ε‖2.

Furthermore, the convexity (8) implies that

−τ

 ∇X i
ε,n,h√

|∇X i
ε,n,h|2 + ε2

−
∇X i

ε,h√
|∇X i

ε,h|2 + ε2
,∇(X i

ε,n,h −X i
ε,h)

 ≤ 0.

Using the above estimates we deduce from (41) that

1

2
‖Zi

ε‖2 +
1

2
‖Zi

ε − Zi−1
ε ‖2 − 1

2
‖Zi−1

ε ‖2 +
τλ

2
‖Zi−1

ε ‖2(42)

≤ τλ

2
‖gh − gn,h‖2 +

(
Zi−1
ε , Zi

ε

)
∆iW .

We estimate the last term on the right-hand side above as(
Zi−1
ε , Zi

ε

)
∆iW =

(
Zi−1
ε , Zi

ε − Zi−1
ε

)
∆iW + ‖Zi−1

ε ‖2∆iW

≤ 1

2
‖Zi

ε − Zi−1
ε ‖2 +

1

2
‖Zi−1

ε ‖2|∆iW |2 + ‖Zi−1
ε ‖2∆iW.

We substitute the above identity into (42), neglecting the positive term multiplied by λ on
the left-hand side and arrive at

1

2
‖Zi

ε‖2 − 1

2
‖Zi−1

ε ‖2 ≤τλ
2
‖gh − gn,h‖2 +

1

2
‖Zi−1

ε ‖2|∆iW |2 + ‖Zi−1
ε ‖2∆iW.

Hence, we sum the above inequality over i, take expectation and obtain

1

2
E
[
‖Zi

ε‖2
]
≤1

2
E
[
‖Z0

ε‖2
]

+
τ

2

i−1∑
k=0

E
[
‖Zk

ε,h‖2
]

+
Tλ

2
‖gh − gn,h‖2.

Finally, an application of the discrete Gronwall lemma yields that

max
i=1,...,N

E
[
‖Zi

ε‖2
]
≤ C

(
E
[
‖Πh(x0 − xn0 )‖2

]
+ λ‖Πh(g − gn)‖2

)
,

and the statement of the lemma follows by the stability of the L2-projection (29). �

We de�ne piecewise constant time-interpolants of the discrete solutions {X i
δ,n}Ni=0 of (14),

{X i
ε,n,h}Ni=0 of (32) and {X i

ε,h}Ni=0 of (40) for t ∈ [0, T ) as

X
δ,n

τ = X i
δ,n, X

ε,n

τ,h = X i
ε,n,h, X

ε

τ,h = X i
ε,h if t ∈ (ti−1, ti].(43)

In the next theorem we conclude the paper by showing the convergence of the fully
discrete numerical approximation (40) to the unique SVI solution of the total variation
�ow (1) (cf. De�nition 3.1).
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Theorem 5.1. Let X be the SVI solution of (1) and let X
ε

τ,h be the time-interpolant (43)
of the solutions of the fully-discrete scheme (40). Then

lim
ε→0

lim
τ,h→0

‖X −Xε

τ,h‖2
L2(Ω×(0,T );L2) → 0.(44)

Proof. For x0 ∈ L2(Ω,F0;L2) and g ∈ L2 for n ∈ N we set xn0 = Pnx0, gn = Png where
Pn : L2 → Vn is the orthogonal L2-projection onto the �nite dimensional eigenspace
Vn = span{e0, . . . , en} ⊂ H1

0. By construction the sequences {xn0}n∈N ⊂ H1
0, {gn}n∈N ⊂ H1

0

satisfy xn0 → x0 ∈ L2(Ω,F0;L2), n ∈ N, gn → g ∈ L2. Below, we consider (3), (32) with
the data xn0 , gn de�ned above.
By the triangle inequality we get

1

4
‖X −Xε

τ,h‖2
L2(Ω×(0,T );L2) ≤‖X −Xδ

n‖2
L2(Ω×(0,T );L2) + ‖Xδ

n −X
δ,n

τ ‖2
L2(Ω×(0,T );L2)

+ ‖Xδ,n

τ −X
ε,n

τ,h‖2
L2(Ω×(0,T );L2) + ‖Xε,n

τ,h −X
ε

τ,h‖2
L2(Ω×(0,T );L2)(45)

=: I + II + III + IV.

From Theorem 3.1 it follows that

lim
ε→0

lim
n→∞

lim
δ→0

I = lim
ε→0

lim
n→∞

lim
δ→0

E
[
‖X −Xδ

n‖2
]

= 0.

By Lemma 4.3 we deduce for the second term that

lim
τ→0

II = lim
τ→0

E
[
‖Xδ

n −X
δ,n

τ ‖2
]

= 0.

For the third term we get by Lemma 5.2 and (29) that

lim
δ→0

lim
τ,h→0

III ≤ lim
δ→0

lim
τ,h→0

C
(
Cnh+ C1/2

n δ−1/2h+ Cnδ + ‖gn − Πhgn‖2
)

= 0.

By Lemma 5.3 the fourth term satis�es

lim
n→∞

IV ≤ lim
n→∞

max
i=1,...,N

E
[
‖X i

ε,n,h −X i
ε,h‖2

]
≤ lim

n→∞
C
(
E
[
‖x0 − xn0‖2

]
+ ‖g − gn‖2

)
= 0.

Finally, we consecutively take τ, h → 0, δ → 0, n → ∞ and ε → 0 in (45) and use the
above convergence of I− IV to obtain (44). �
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