STRONG CONVERGENCE OF PROPAGATION OF CHAOS FOR
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ABSTRACT. In this work we show the strong convergence of propagation of chaos for the particle
approximation of McKean-Vlasov SDEs with singular LP-interactions as well as for the moderate
interaction particle systems on the level of particle trajectories. One of the main obstacles is to
establish the strong well-posedness of the SDEs for particle systems with singular interaction.
To this end, we extend the results on strong well-posedness of Krylov and Rockner [25] to the
case of mixed LP-drifts, where the heat kernel estimates play a crucial role. Moreover, when the
interaction kernel is bounded measurable, we also obtain the optimal rate of strong convergence,
which is partially based on Jabin and Wang’s entropy method [19] and Zvonkin’s transformation.

Keywords: Propagation of chaos, McKean-Vlasov SDEs, Zvonkin’s transformation, Girsanov’s
transformation, Heat kernel estimates, Entropy method.
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1. INTRODUCTION

Let ¢ : R. x R x R 5 R™, F: R, x R? x R™ — R% and o : R} x R? — R? @ R? be Borel
measurable functions. For a (sub)-probability measure u over R?, we define

b(t, @, p) == F(t,x, (¢ ® p)(x)),
where ¢q(z,y) := ¢(t,z,y) and

@)@ = [ oty

Consider the following interacting system of N-particles,
dx =b(t, X" gy )dt + o (6, X)) AW, i=1,--- N, (1.1)

where nx v stands for the empirical distribution measure of N-particles XN = (xN x O,

N
1
iy (dy) == 5 D v (dy),
j=1

and {W* i € N} is a sequence of independent standard Brownian motions on some stochastic basis
(Q, 7P, (F)i>0). The infinitesimal generator of the above system is given by

N
LY p(x) = tr(a(t, zt) - Viicp(x)) + F(t, zt, % Z b (2, x3)> - Veip(x),

where x = (z!,--- ,2V) € (RY)Y and a = 1oo*. Here and below we use Einstein’s convention for

2
summation.

In this paper we are mainly concerned with the weak and strong convergence of the solutions
to (1.1) with general LP-singular interaction ¢:(x,y) to the solution of the following distribution-
dependent (or McKean-Vlasov) SDE (abbreviated as DDSDE) when N — oc:

dX; = b(t, X¢, px,)dt + o(t, X;)dW}, (1.2)

where px, denotes the distribution of X;. In particular, u = (ux,)t>0 solves the following non-
linear Fokker-Planck equation in distributional sense:

Op = 0;05(aizp) + div(b(p)p),

Moreover, we are also interested in the so called moderately interacting kernel ¢¢(x, y) = ¢c, (z—y),
where ¢., is a family of mollifiers and exy — 0 as N — oo. In this case, the solution to the
interacting particle system

AXP = F (6 X (e ® mxp ) (X)) dE + o (6, X) AW, i=1,-- N, (1.3)
is expected to converge to the solution of the following density-dependent SDE (see [34, 23]):
dXt = F(t,Xt7pXt(Xt))dt+0'(t,Xt)th7 (14)

where px, stands for the density of X;. Here p := (px, )t>0 solves the following nonlinear and local
(or Nemytskii-type) Fokker-Planck equation:

Oip = 0idy(aizp) + div(F(p)p). (15)

It should be kept in mind that for d =1 and F(p) = p, this is Burgers-type equation.
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For the motion of a single particle, when ¢ € Li(LP) with % + % < 1, Krylov and Réckner
[25] showed the existence and uniqueness of strong solutions to the following SDE by Girsanov’s
transformation:

dX, = ¢ (X,)dt + dW,.

Later, Zhang [48] extended their result to the multiplicative noise case by Zvonkin’s transformation
of [52] (see also [50, 45]). However, for N-particle system (1.1) with F(¢,z,7) = r and ¢¢(x,y) =
¢¢(x —y), where ¢ is as above, one can not use these well-known results for L} (LP) drifts to derive
the well-posedness by considering (1.1) as an SDE in RV9. For instance, when N = 3, consider
the following SDE in R3%:

ax; = [o(X!,X2) + o(X}, X7) |dt + aw),
dX2 = [¢(X§,Xg) +¢>(X2,Xf’)}dt+de, (1.6)
AX} = [o(X}.X}) + o(X7.XP) ] at + AW,

where [¢(z, y)| < h(z—y) and h € LP withp > d. Fori = 1,2,3,let ¢; (21, 22, 23) == 3, 4; d(zi, 2;).
As a function of (z1, 2, 23) in R3¢, one only has

¢; € LXLE, i=1,2,3, (1.7)

where z} stands for the remaining variables except for z;. It does not satisfy the conditions in [25].
Note that in the same work [25], Krylov and Rockner also showed the strong well-posedness for a
class of special stochastic particle system with singular gradient interaction ¢ = VV, where V is
continuously differentiable on R?\{0} and satisfies some other conditions (see Section 9 in [25]).
Moreover, the strong well-posedness for particle system with Biot-Savart law interaction kernel
é(x) = (—x2,21)/|7|* was established in [35] and [13], which is related to the random point vortex
approximation for two dimensional Navier-Stokes equations. In the above well-known works, the
key point of establishing the strong well-posedness is to prove that the process X} — X for i # j
does not touch the singular point 0, i.e. the state space is RV¢ “without diagonals”. However, the
strong well-posedness for particle systems (1.1) with general LP-interaction kernels on all of RV¢
has still been open.

Therefore, our first task is to extend [25, 48] to the case of mixed LP-spaces. We mention here
that although Ling and Xie [29] have already considered singular SDEs in mixed LP-spaces, their
result cannot be applied to equation (1.6) due to the new feature that we need to consider the
order of the integral in x1, x2,x3 as well as the different integrability indices. Notice that each ¢;
belongs to a different mixed LP-space. For DDSDE (1.2), in [37], the last two authors of the present
paper have already shown the weak and strong well-posedness (see also [28] and [33] for bounded
measurable interaction kernel). Furthermore, weak solutions to the distribution density-dependent
SDE (1.4), were constructed in [2], first solving the corresponding Fokker-Planck-Kolmogorov
equation and using the superposition principle, and strong solutions were constructed in [16] by
directly using Euler’s scheme. Recently, Wang [44] studied the weak and strong well-posedness
for more general distribution density-dependent SDEs with singular coefficients by a fixed point
argument, but not for mixed LP-drifts. Nowadays, there is a vast literature about McKean-Vlasov
or mean-field SDEs. We do not intend to list all the papers here. The interesting reader is referred
to the references in the already mentioned papers.

1.1. Propagation of chaos. In this subsection we recall some notions and well-known results
about the propagation of chaos.
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Kac’s chaos: Let E be a Polish space and p € P(E) a probability measure on E. Let
(1) Nen be a sequence of symmetric probability measures on the respective product space EV,
where symmetric means that for any permutation (x;,,-- , ;) of (x1, -+ ,zN),

NN(d$i17 T VdmiN) = MN(dxlv T 7$N)'
In particular, 4’V has a common 1-marginal distribution. One says that (u")yen is u-chaotic if

for any k € N (see [24]),

pN* weakly converges to u®* as k < N — oo, (1.8)

where p™V*(dzy,--- ,dxg) = pN(dxy,--- ,dzg, B, -+, E) is the k-fold marginal distribution of
V. Tt is well known that (1.8) holds if and only if (1.8) holds for only k = 2 (see [42, (i) of
Proposition 2.2]). In the language of random variables, Kac’s chaos can be restated as follows: Let
N = (N (ENNY be a family of E-valued random variables. If the law of &V is symmetric
and p-chaotic, one says that SN is p-chaotic. It is also equivalent to (see [42, (ii) of Proposition
2.2])

the empirical measure nen (dy) := & Zjvzl d¢n.i(dy) € P(E) converges to p in law. (1.9)

Note that £N can be regarded as N-random particles in state space E. From this viewpoint, Kac’s
chaos means that if one observes the distribution of any k-particles, then they become statistically
independent as N goes to infinity. Indeed, (1.9) is a law of large numbers, i.e., for any ¢ € Cy(E),

Nen () :=%Zw(€N’j)—>u(w) 1:/E<p(:v)u(dx), in law.

In Hauray and Mischler’s work [17], various quantitative and qualitative estimates related to the
chaos are obtained for different notions such as Kac’s chaos, entropy chaos and Fisher information
chaos. More references about Kac’s chaos can be also found in [17].

Propagation of chaos: If one considers Kac’s chaos as a static version of chaos, then prop-
agation of chaos is usually understood as a dynamical version of Kac’s chaos. More precisely, let
(Efv)@() = (ftN’l, e ,ng’N)@o be a family of EV-valued continuous stochastic processes, which
can be thought of as the evolution of N-particles. Let (&)¢>0 be a limit E-valued continuous
stochastic process defined on the same probability space. Let ul¥ be the law of Eiv in BN and ju
be the law of &; in E. Suppose that u is pio-chaotic at time 0. One says that propagation of chaos
holds if for any time ¢ > 0, ¥ is ys-chaotic. Usually, as the evolution of particle distributions, the
probability measures p¥ and y; satisfy some Fokker-Planck equation in the weak sense. Therefore,
it can be studied by purely PDE’s method. However, as stochastic processes, one would like to
have the following stronger convergence in a probabilistic sense: for each ¢ > 0,

. N1 _
lim EgV — & =0,

or in the functional path sense

lim E ( sup |[¢NT — gs|> =0. (1.10)

N—oo s€[0,t]

In fact, when F, ¢ and o are globally Lipschitz continuous in z,r and uniformly in ¢, McKean [30]
firstly established the following result for (1.1) and (1.2): for any T > 0,

T
E( sup |x¥1—x,12) < C&0T) (1.11)
s€1[0,T] N
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where the constant C(b,0,T) > 0 can be estimated explicitly. We note that the power of con-
vergence rate N is sharp. The above estimate is also reproven by Sznitman [42] by more direct
synchronous coupling methods. Since then, propagation of chaos has undergone an enormous de-
velopment in mathematical kinetic theory (see [15, 32, 17, 20]). Moreover, propagation of chaos
also appears in many other disciplines including data science [11], mean-field games [6, 7] and the
training of neural networks [38], etc. In a recent paper [8], Chaintron and Diez reviews various
models, methods as well as applications for propagation of chaos.

Obviously, Lipschitz assumptions on F,¢ and o are too strong in practice. In fact, most of
the interesting physical models have bounded measurable or even singular interaction kernels. For
examples, the rank-based interaction diffusion studied in [40, 26] has a discontinuous interaction
kernel (see (1.20) below), and the Biot-Savart law appearing in the vortex description of 2d im-
compressible Navier-Stokes equations has a singular kernel like z* /|z|2. For this type of singular
kernels, Osada [36] firstly showed the propagation of chaos for the point vortices associated with
the 2d Navier-Stokes equation with large viscosity. Recently, in [14], Fournier, Hauray, and Mis-
chler dropped the assumption of large viscosity by the classical martingale method. More recently,
Jabin and Wang [20] obtained a first quantitative convergence rate about the relative entropy be-
tween the law of particle system and the tensorized limit law, where the key point is an estimate
for the entropy and a large deviation type exponential functional. In fact, the results in [20] can
be applied to a large class of singular kernels K in W~ with K(z) = —K(—x), as well as the
bounded measurable interaction kernel (see Section 5.2). We note that the proof in [20] strongly
depends on the symmetry of the kernel K (x), not valid for general LP-singular kernel.

For general LP-singular interaction kernels, in [43], TomaSevi¢ uses the partial Girsanov trans-
form as in [21] to derive the propagation of chaos under the extra assumption that the set of
discontinuous points of the interaction kernel has Lebesgue measure zero. In [18], Hoeksema,
Holding, Maurelli and Tse showed a large deviation result for a particle system with LP-singular
interaction kernels. As a byproduct, they also obtained a result of propagation of chaos (see also
[26]). However, in [43] and [18], both of them assume the initial distributions of the particle sys-
tem are i.i.d, that is, the initial distributions are not really chaotic. This assumption is crucial
for them to construct a weak solution for the interaction particle system by Girsanov’s transform.
In the present paper we overcome this difficulty by showing the existence of strong solutions for
the particle system (see Lemma 5.2 below), and then obtain the strong convergence as in (1.10)
for singular interaction kernels and the quantitative convergence (1.11) for bounded measurable
kernels by Zvonkin’s transformation. Note that Bao and Huang [1] have already used the Zvonkin
transformation to obtain propagation of chaos for Holder interaction kernels with non-optimal rate
N—1/4,

1.2. Main results. Before stating our main assumptions, we introduce the following index sets:
d
°:={(g,p) € (2,00)"" :|%|+§<1} (1.12)
and
Z = {x= (i, ,3;,) : any permutation of (z1,---,z4)}.

Now we make the following main assumptions:

(H?) There are xo > 1 and 7 € (0, 1] such that for all + > 0 and z,2’, ¢ € RY,

ko €l < lo(t,2)€] < molél, llo(t, ) —a(t,a")||lus < wolz —a'|™, (1.13)
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where || - || gs is the usual Hilbert-Schmidt norm of a matrix. Moreover, for some (qo, py) €
S and xg € & and any T > 0,
HVUHL‘?TO(ES) < Ko, (1.14)
where the localized space ig is defined in Subsection 2.1 below.
(H®) Suppose that ¢;(z,r) = 0 and for some measurable h: Ry x R — R, and x; > 0,
|F(t,z,r)| < h(t,x) + kalr|, |F(t,x,7) — F(t,z,r")| < klr — '), (1.15)
and for some (¢,p) € #° and x € 2" and for any T > 0,

Q=

1Pl £2) +

T
/0 sup (ln( )ity + Iu(y: ity ) dt] < ni. (1.16)

ye
Example 1. We provide two examples to illustrate condition (1.16).
(i) Let d > 2 and ¢ (x,y) = iz, y)/|z—y|*, where ¢(z,y) is bounded measurable and « € (0, 1).
It is easy to see that (1.16) holds for ¢ close to co and p € (d, g) with % + % < 1.
(i) Let d > 1 and ¢y(x,y) = (@, y) /T, |2; — y;|*7, where a; € (0, 3) satisfies ag +-+-+ag < 1
and ¢¢(z,y) is bounded measurable. Note that one can choose ¢ close to co and p; > 2 close
to 1/a; so that |%| + % < 1 and (1.16) holds. In this case, the kernel is allowed to have

singularities along each axis.

Throughout this paper we use © to denote the set of parameters that a constant may depend
on. O may have different parameters in different occasions, which should be clear from the context,

e.g.,

0= (m7d7’70a Ro,K1,490,Po,4, D, " * )
The aim of this paper is to show the following strong convergence of the particle approximation.
Theorem 1.1. Let T > 0. Under (H?) and (H®), for any initial values XYY and X, there
are unique strong solutions XY and X; to particle system (1.1) and DDSDE (1.2), respectively.

Moreover, letting ud be the law of X5 in R™ and pg the law of X in R, we have the following
strong convergence results:

(i) (Singular kernel) Suppose that Y is symmetric and pg-chaotic, and
. N1 _ y 2 _
Jim E|X) - Xof? = 0.
Then for any v € (0, 1),
lim E| sup |XV'—X,* ) =0. (1.17)
N—o0 tE[O,T]
(ii) (Bounded kernel) If h and ¢ in (H®) are bounded measurable and
K = sng(uévluE?N) < o0, (1.18)
where p$™N € P((RY)N) is the N-tensor of po and H stands for the relative entropy (see (4.3)

below), then for any § > 2 and v € (0,1), there are constants C; = C;(T,~,6,0) >0,i=1,2
independent of ¢ and ko such that

(1.19)

E ( sup | XN — Xt%) < Cpe2liols <]E|Xév’1 - Xo|? + ~

%) —+ ]. > N
t€[0,T] .



PROPAGATION OF CHAOS OF MCKEAN-VLASOV SDES 7

Remark 1.2. If supy E|Xév’1|p < oo for some p > 2, then by interpolation one in fact has

lim E [ sup |XV' =X P | =0, ~e(0,1).
N—oo te[0,T)

The Euler approximation for particle system (1.1) with bounded interaction kernel was studied in
[49], which combined with (1.19) implies the full discretization approximation for DDSDE (1.2).
Example 2. Let d = 1. Consider the following rank-based interaction:

b(t,x, n) = F(t,x, p(—o0, z]). (1.20)
In this case, the interaction kernel is ¢(z,y) = 1(_oo2)(y) = ls—y>0, which is bounded and
discontinuous. Thus, by (1.19) we have the strong convergence rate of the particle approximation.
In particular, if we let V(z) := u((—o0,x]), o(t,z) = /2 and F(t,z,7) = g(r), then V solves the

following Burgers type equation:
!/

oV =AV + (/OV g(r)dr) .

For g(r) = r, this is the classical Burgers equation. In this way, the above Burgers type equation
has been studied in [5, 22, 26]. In the following Example 3, we have another way to simulate
Burgers equation via moderate interaction particle system.

Next we turn to the moderate interaction system (1.3) and have the following result.

Theorem 1.3. Let T > 0. Suppose that (H?) holds, and
|F(t,z,r)| < k1, |F(t,z,r)—F(t,z,r")| < kilr —71'|, (1.21)
and for en € (0,1) withe — 0 as N — oo,
Su(,y) = dey (& —y) = ex?ol(z — y)/en),
where ¢ is a bounded probability density function in RY with support in the unit ball. Then for any

initial value Xo with bounded density pg, there is a unique strong solution X to density-dependent
SDE (1.4) such that for each t > 0, X; admits a density p; with

1ptllsc < C(T,O)lp0llo0s € [0,T]. (1.22)

Moreover, under (1.18), for any T > 0, f € (0,7), v € (0,1) and & > 2, there are constants
C;=Ci(T,B,7,6,0) >0, i =1,2,3 such that for all N > 2,

- 1\
E ( sup X - Xt|27> < Creeen <E|Xév’1 — Xol* + KQ;) + Caeyy (1.23)
te[0,T

Remark 1.4. Suppose that for some C' > 0,
E|X) — Xo|? < C/N.
If one chooses ex = Cy/(In N )Y/ (09 with C, being large enough, then by (1.23), for some C > 0,

c

N,1 2y -
2 (g 0" ) €

In [23], under smoothness assumptions on F', ¢ and the initial density pg, Jourdain and Méléard
[23, Theorem 2.7] have proven a similar estimate as (1.23). We note that the concept of moderately
interacting particles was introduced by Oelschlédger in [34]. Therein, ey = N —B/d and B € (0,1).
For 8 =0 and 8 = 1, they are called weakly and strongly interacting, since they correspond to the
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scaling order 1/N and 1, respectively. While, the moderate interaction refers to any choice of ey
with that ey — 0 and e3?/N = o(1).

Although we assume that F'is bounded in (1.21), once we can establish the existence of bounded
solutions to the Fokker-Planck equation (1.5) under linear growth assumptions of F' in r, then the
boundedness of F' in (1.21) is no longer a restriction. We illustrate this in the following example.

Example 3. Consider the following special case:
Op = Ap + div(F(p)p),

where F': Ry — R? satisfies Zle |F/(r)] < k1. Since the above equation can be written in the
following transport form:

Op=Ap+ (F(p)+ F'(p)p) - Vp,

it is easy to see that by the maximum principle,

lptlloo < o]l oo

This can be established rigorously by considering the truncated F as F,(r) = F(r A n), where
n > ||polleo. In particular, the above example covers the one dimensional Burgers equation, i.e.,
F(r) = r. In this case, if one takes ¢(z) = 1[_1,1j(7)/2 in (1.3), then
;N
N,i
(Ben @ 1 )X = G D L
j=1

We believe that this is useful for numerical experiments.

1.3. Structure of the paper. In Section 2 we first introduce the localized mixed LP-spaces and
its basic properties used in this paper. Then we study second order parabolic PDEs with mixed
LP-drifts and show the unique existence of strong solutions. Since each component of the drift
may be in a different mixed LP-space, the new point here is that the second order derivative of the
solution shall stay in a direct sum space (see Theorem 2.9).

In Section 3, we show the weak and strong well-posedness for stochastic differential equations
with mixed LP-drifts. As usual, we need to prove a priori Krylov estimates based on the PDE
estimates obtained in Section 2, and then show that we can perform the Zvonkin transformation.
Since Zvonkin’s transformation is a C!-diffeomorphism and reduces the original singular SDE to
an equivalent regular SDE, one can use well-known results such as the heat kernel estimates to
derive some apriori estimates for the original SDE, and then show our main results. We emphasize
that the mixed LP-space is not invariant under C!-diffeomorphism transformation. Thus one can
not obtain the Krylov estimate directly through the transformed equation. Instead, we use the
heat kernel estimates to show the Krylov estimate for the indices (¢, p) € H.

In Section 4, by Picard’s iteration, we show the weak and strong well-posedness for distribution
density-distribution dependent SDEs with mixed LP-drifts, where we use the entropy formula,
Pinsker’s inequality and the Fokker-Planck equation to show that the Picard iteration of the
density is a Cauchy sequence in L' N L.

In Section 5, by the classical martingale method we show that the propagation of chaos for
systems as in (1.1) with singular kernels holds in the weak sense, where the key point is to use the
partial Girsanov transform used in [21, 43] to derive some uniform estimate for the exponential
functional. In particular, the strong solution is used to treat the chaos of the initial distributions.
Moreover, we also provide a detailed proof for Jabin and Wang’s quantitative result [20] for bounded
interaction kernels. This is not new and only for the readers’ convenience.
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In Sections 6 and 7, we give the proofs of Theorems 1.1 and 1.3, and show how to use Zvonkin’s
transformation again to derive the strong convergence from the weak convergence obtained in
Section 5, where the key point is Lemma 6.1.

We conclude this introduction by introducing the following convention: Throughout this paper,
we use C with or without subscripts to denote constants, whose values may change from line to
line. We also use := to indicate a definition and a™ := 0V a. By A <¢ B and A <¢ B or simply
A < B and A < B, we mean that for some constant C > 1,

A< CB, CT'B<ALCB.
2. PRELIMINARIES

2.1. Mixed LP-spaces. In this section we recall the definition of localized mixed LP-spaces, which
was originally introduced in [3]. As we have seen in the introduction, these are very suitable for
singular interacting particle system (see also [18]). Let d € N. For a multi-index p = (p1,--+ ,pd) €
(0,00]? and any permutation x € 27, the mixed LP-space is defined by

1

| fllLe == (/R (/R (/R|f(x1)... 7md)|pddxid)w...dxi2> dxn) . (2.1)

When p = (p,---,p) € (0,00]%, the mixed LP-space is the usual L?(R%)-space, simply denoted by
ILP. Note that for general x # x’ and p # p/,

LY #LE #£LE,.
For multi-indices p, q € (0, 00]?, we shall use the following notations:
1 1 1 ¢ 1 &1
5 = (]717 71Td)’ b-q:= ;piqi7 ‘;‘ = ;Ea
and
p>q (resp. p>¢q; p=q) < p; > qi (vesp. p; 2 ¢i; pi = ¢;) foralli=1,---,d.
Moreover, we use bold numbers to denote constant vectors in R¢, for example,
1=(1,---,1), 2=(2,---,2).
For multi-indices p, g, € (0, 00]? with % + % = %, the following Holder inequality holds

1fglle < I fllezllgly- (2.2)
For any multi-indices p, g, € [1,00]¢ with % + % =1+ %, the following Young inequality holds
If*gllug < I flleellglly- (2.3)

For any 7 > 0, let B” be the ball in R? with radius r and center z. Let y : R? — [0,1] be a
smooth cutoff function with x|p, =1 and x|pg = 0. For fixed r > 0, we set

Xz (z) = x((x — 2)/r), x,z¢€ R, (2.4)

, we introduce the following localized LP-space (see [51]):
L2 = {/ € Lio(®RY), Ifllgg = sup Il < oo},
and for a finite time interval I C R and ¢ € [1, o],

LHIR) = {f € Lho(T x R, gy cp) = sup X Flucug) < o}, (2.5)

For p € [1, oc]?
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where for a Banach space B we set
L{(B) := LY(I; B).

By a finitely covering technique, it is easy to see that the definitions of Eg and ]Ijg(]ljﬁ) do not
depend on the choice of r (see [51]), and for any 1 < g2 < ¢1 < 00 and 1 < p, < p; < o0,

L c Lge, LP(LE) c L (LE2). (2:6)
This property is the main advantage of using localized spaces. Since the supremum z in the
definition of L{(L2) is taken outside the time integral, we obviously have
Li(LY) c L{(LE).
Moreover, for a > 0, let C* be the usual Holder space with norm:

[o] N .
1Flleo =3IV flloo + sup Y@ = V)]
§=0

z#yER |'T - y‘a_[a]

b

where V7 stands for the j-order gradient and [a] stands for the integer part of a. For simplicity
we write

LL(LE) := L, 1 (LR), L% := L

2 (L), LE(C%) == Lig 7 (C%).

Example. For i = 1,---,d and @ € (0,1), let fi(z) = b(x)|z;|~®, where b(z) is a bounded

measurable function. It is easy to see that f; € LE., where x; = (T1, @1, Tig 1y * 5 Ty L)
and p = (o0, -+ ,00,p) with p € (1, i) From this example, one sees that for a C*-diffeomorphism
® from R? to RY, say ®(z) = (x4, 21, -+ ,Ti_1,Tis1, -+ ,Tq), it may happen that

fio® ¢ L.

Throughout this paper, we shall use the same notation I to denote mollifiers in various dimen-
sions N, i.e.,

I.(z)=eNI(z/e), e €(0,1), (2.7)

where I' is a nonnegative smooth density function in RY with compact support in the unit ball.
For a function f € L{ (RY), the mollifying approximation of f is defined by

loc
fe(@) = f* () = - f(x —y)I(y)dy.

The dimension N takes different values in different occasions, which should be clear from the
respective context.
The following lemma is obvious by the definitions.

Lemma 2.1. For any f € L2, there is a constant C = C(p) > 0 such that for all ¢ € (0,1),

Ifllze < CllFlze, (2.8)
and for any R > 0,

lim [|(f. — f)x¢ e = 0- (2.9)
e—0
The local Hardy-Littlewood maximal function in R? is defined by

1
Mf(x):= sup B [z +y)dy.
r€(0,1)| 0| By

The following result is taken from Lemma 2.1 in [45].
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Lemma 2.2. (i) There is a constant C = C(d) > 0, such that for any f € L>®(RY) with
Vf € Lig(RY),
[f(@) = f) < Clz =yl (MIVF]() + MIVFI(y) + | flloc) (2.10)

for Lebesque-almost all x,y € R, o
(ii) For any (q,p) € (1,00)'+4, there is a C = C(d,p,q) > 0 such that for all f € LL.(LP),

|||Mf|||£qT(E£) S C|||f|”EqT(JE,€)' (2.11)

2.2. A study of PDEs with mixed LP-drifts. In this section we show the existence and unique-
ness of strong solutions in the PDE sense to second order parabolic PDEs with drifts in mixed
LP-spaces. For t > 0, let P,f(z) = Ef(x + W) be the Gaussian heat semigroup, i.e.,

Puf@) = [ oo =)y,

where
B

gi(z) == (2mt) e 2.

First of all, we establish the following easy estimates about P;.

Lemma 2.3. (i) For anyp € (1,00)%, T > 0 and 3 > 0, there is a constant C = C(T,p, 3,d) >
0 such that for all f € L® and t € (0,T],

I flles < Ct=2EHED| £l e (2.12)
(i) For any q > p, there is a constant C = C(q,p,d) > 0 such that for all f € LP and t > 0,
IV fllg < C 205110 £, (2.13)

Proof. (i) Note that for m =0,1,---,
VL@ = [ Vol =)

For % + % =1, by Holder’s inequality (2.2) and the scaling, we have

1

_1 1
IV Piflloo < IV gelliall fllue =t 25DV g1 lugllf e,

where ||[V™g1|La < oo. Then estimate (2.12) follows by the interpolation theorem for Holder
spaces.
(ii) For € [1, 0c]¢ with % +1i=1+ %, by Young’s inequality (2.3) and the scaling, we have

IVPfllg < IVgellugll flle = 2120V gy ug | £z
Then estimate (2.13) follows because ||[Vgi||Lr < oo. O
We introduce the following index sets for later use:
I 1= {(q,p)e(l,oo)1+d: \%|+%<m}, m=1,2. (2.14)
Remark 2.4. #° C %), where #° is defined by (1.12). For (¢,p) € .#°, it holds that (4, £) € .%,.
For A > 0 and f € L%(LLP), we define

t
u(t, x) ::/ ef)‘(tfs)Pt_sf(s,x)ds, t>0,
0

which solves the following non-homeogenous heat equation
du=3Au—u+f, u(0)=0.
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Lemma 2.5. (i) For any T > 0, (¢,p) € H and B € [0,2 — \%| - %), there is a constant
C=C(T,d,q,p,B) >0 such that for all X > 0,
(v A2 || oy < Ol g z)- (2.15)

(it) For any T > 0, (¢,p) € H2 and (¢',p") = (q,p) with |%| —|—% < \§| + % + 1, there is a
constant C = C(T,d,q,p,q',p") > 0 such that for all X > 0,

S+ S+ 2 -151-2
(v T )y < Clflg ). (2.16)

(i1i) For any T >0, (¢,p) € F1 and X > 0, there is a constant C = C(\,T,d,q,p) > 0 such that
forall0 <ty <ty <T,

1
[u(t1) = u(to)llc < Ct1 —t0)2 || fllLe we)- (2.17)
Proof. (i) For € [0,2 — |%| - %), by (2.12) and Holder’s inequality in the time variable, we have

t
—A(i—s _1 1
IIU(t)IIcBS/O e M) (¢ —5) 2B £(5) | Lpds

t
< (/ (eAsS—;wﬂ))q"ldS)
0

S AVA)TEEED | fllLe ).

1—

1
[ flles ey

(ii) For (¢',p’) = (¢, p) with |%| + % < \#| + % + 1, by (2.13) we have
t
V(O y S [ e = o) T ) g
* 0

Let » > 1 be defined by % = % +1- %. By Young’s inequality we further have

T ) 1/r
-r -z pl— P
IVaully gy < ( / T EII >ds> 1/ lus )
1_1 11
S(AANT 31+ 5] I”/l)”f”Lg,(]Li)-

(iii) For 0 < tg < t1 < T, by definition we have

to
u(t) ~ ulte) = [ NP = Py ) (s, )
0
to
+ (ef)‘(tlfto) — 1)/ efA(tD*S)PtO_Sf(s,x)ds
0

t1
+/ e M= p,  f(s,x)ds
to

= Il + I2 + Ig.
For I, noting that

1 t t L N
177 =l <5 [ I8P Sladts S ( [ 573a5) 191 £ 419
0 0
by (2.12) and Hélder’s inequality, we have

to
Illoe < (1 — o) / IV Py f(5)]| s
0
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t(] 1 1
< (t—to)} / (fo — 5) ¥OHED| £(s) o ds
0

1,3(1=2-]2])
S (t —to)?tg [ fllLa ey,
and because 1 — e~ t1=0) < \(t; —tg),
[L2lls0 < Alt1 = to)[I.fllLa wz)-
For I5, as above, by (2.12) and Hélder’s inequality, we have

ti1—to
||I3Hoo S, (/ (e)\ss_élél)qqlds)
0

Combining the above estimates and because % + |%\ < 1, we obtain (2.17). O

1
K _ 1241
I £l ey < (b1 —to)?! z(quDHfHL‘IT(Li)'

Now we shall study the following second order parabolic PDE in R, x R%:
Owu = tr(a-V?u) +b-Vu—u+ f, u0)=0, (2.18)
where A > 0, a := 00*/2, o satisfies (1.13) and
b, € Lo(Ry x RY).
We introduce the following notion of solutions to PDE (2.18).

Definition 2.6. Let T > 0 and %r C L (R, xR?) be some subclass of locally integrable functions.

loc

We call u € %r a solution of PDE (2.18) if for all t € [0,T] and ¢ € C.(R?),

(u(t), ¢) = / {tr(a - V?u) + b- Vu,@)ds — A / (u, o)ds + / (. )ds,

where we have implicitly assumed that V?u € L . and Vu € LS, so that the terms on the right

hand side are well defined. Here Y will be specified below in the respective cases.
We first show the following result for bounded drift b (see [29, Theorem 2.1]).

Theorem 2.7. Let T > 0 and (¢,p) € (1,00)'T%. Suppose that (1.13) holds and b is bounded
measurable. Then for any f € LL(L2) and B € [0,2 — \%| — 2, there exists a unique solution

q
u € Ur in the sense of Definition 2.6, where Uy consists of all u with
lig_g_|1|_2
(1vA)zE 7l “)HUHJLOTC(CB) + |||V2U|”6L'4T(6L'§) < Ol fllgs, zzy- (2.19)
Here and below, the constant C = C(T, ko, d, p,q, B, [|bllLse) > 0 is independent of A. Moreover,
for any (¢',p") = (q,p) with |%| + % < |%| + % + 1, we also have
SIS+ 2 -151-2
(v XDl e < Ol g2 (2:20)
and for all 0 <tg <t1 < T,
Jut) = u(to)lloo < CN)(t1 = 10) 2| fllg zz)- (2.21)

Proof. We only prove the a priori estimates (2.19), (2.20) and (2.21). The existence is then standard
by mollifying the coefficients and a compactness argument. Fix r > 0. Let x7 be the cutoff function
in (2.4) and w, := ux?. It is easy to see that

Ow, = tr(a- V2wz> —Aw, +g., w,(0)=0, (2.22)

where
g = tr(a- V)" — tr(a - Viw,) + (b- Vu)x. + fx..
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Let (¢,p) € (1,00)'T. By [29, Theorem 2.1], there is a constant C' = C(T, ko, d, p,q) > 0 such
that

w:llLse ey + Vw2 llLs wpy So ll9=llLs.we)- (2.23)
On the other hand, we can write (2.22) as
ow, = Aw, —  w, +tr((a = 1) - V2w,) +g., w.(0)=0,

and by Duhamel’s formula,

¢
w,(t,x) = / e ME=Ip (tr((a — 1) - V2w,) + g.)(s, z)ds.
0
Note that by (2.23),
Itr((a — 1) - V2w.) + gz lluo.azy S 9= lluewe)- (2.24)
For € (0,2 — || = 2), by (2.15) and (2.24) we have
12
(1vA)? 3 (2615 )||wz||IL°°(cB) 192 llLa.wz)- (2.25)
For (¢',p’") = (¢, p) with |%| + 3 < |%| + —, + 1, by (2.16) and (2.24) we have
1 7 P Y
WMN“‘+ TNVl ey S 9l e (2.26)
For 0 <ty <t <T, by (2.17) and (2.24) we have
[wa(t1) — w2 (to)llso < (1 —t0) 2|92 lLa wr)- (2.27)
Since x2"VIxT = VIix" for j = 0,1,2, we have
19:lle@wzy S IVuVXZ e wey + [uV?x e ey + [0l [VuxZliLe we)
< (IVxElloo + 1BllLs ) Va2 e ey + VX oo lux? e az)-
Substituting this into (2.23), (2.25), (2.26) and (2.27) and taking supremum in z € R%, we obtain
lullze @y + 1V*ullgs @2y S W lgs @z) + IVulles zp) + lullza gz, (2.28)
and for 5 € (0,2 — |%| - %),
AANICE D iz o) S Wl o) + IVUlg o + Tulig iy (2:20)
and for (¢',p’) > (g, )Wlth\1|+ <|1|—|— +1,
Qv D Tl o) S g gp) + IVuly gy + Tl @ (2.30)
L (@2 L% (LR) LT (LX) LT (LX) )
and for all 0 < tg <ty < T,
fu(t) = uto)loo S (6 — )} (Ulzy ooy + IV uly gy + ey ). (2:3D)
Note that by the interpolation inequality, for any e € (0, 1),
IVullzs gz < el Vullgy gz) + Cellullia zz)-

Substituting this into (2.28) and choosing ¢ small enough, we derive that for any ¢t € [0, T7,

1/q
WWW+WWWW<WMUM(/W MEyas)
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By Gronwall’s inequality, we get

|”U”|L39(E§) + |||V2UH|EGT(6L'§:) < C|||f|||1th(Jig)a
which together with (2.29), (2.30) and (2.31) yields (2.19), (2.20) and (2.21). O
Remark 2.8. For any T,v > 0 and (q,p) € %, there is a C = C(T,~,d, ¢, p) > 0 such that

x

T
supE (/ h(s, o + st)ds> < Clhly g (2.32)
' 0
Indeed, let @ = //2I, b=0, A =0 and f(s,z) = h(T — s,x) in PDE (2.18). By (2.19) we have

T T
E ( / h<s7x+wvs>ds> - / Pz f(s,2)ds = u(T,2) < | lzs e, = Whllzs e

In particular, once we have the Gaussian type density estimate for SDEs, then by (2.32), we
immediately have the Krylov estimate as we shall see in Theorem 3.5 below.

Next we consider the drift b being in the mixed LP-space, where each component b; may lie in a
different mixed LP-space. Thus the second order generalized derivative of u stays in a direct sum
space of mixed LP-spaces. The following result seems to be new and is the cornerstone of studying
SDEs with singular mixed LP-coefficients.

Theorem 2.9. Let T > 0. Suppose (1.13) and for some (¢;,p;) € S andx;, € Z',i=1,--- ,d,

101l o1y + -+ [ballgae geay < w1 < oo (2.33)
Let xg € 2 and (qo,py) € H1. Define
vi=1-— Z_:I(I)lﬁl.).(’d(|p%| +2) (2.34)

For any f € IE%? (]Ei’g) and B € [0,9), there is a constant Co = Co(T, ko, d, ;, qi, B) = 1 so that for
all A > Conf/ﬁ, there exists a unique solution u € Zr to PDE (2.18) in the sense of Definition
2.0, where Uy consists of all u = ug + uy + - -+ + ug with

d
19—
MOl oy + 30 IVl zey < Cullf ooy (2.35)
i=0
where Cy; = C1(T, ko, d, p;, Gi, B) > 0 is independent of X and k1. Moreover, for all0 < to < t; < T,
1
[[u(tr) = u(to)lleo < CA)(t1 = t0) 2 [ fllzao g0 (2.36)

Proof. Again we only show the a priori estimate (2.35) since then the existence can be shown by
a compactness argument. Let u = ug + w1 + - - - + ugq, where ug solves the following PDE:

Oyug = tr(a - Vug) — Mg + f,  uo(0) =0,
and for each i = 1,--- ,d, u; solves
Opu; = tr(a - V2ui) + b; - Oiu — My, w;(0) =0.
Let A > 1 and 8 € [0,9) with ¢ being defined by (2.34). By Theorem 2.7 with b = 0, we have
2

T -2 _
A0 20 17007 gl eavs) + IV uollgao 220y S W llzse oo

and
1
[uo(t1) = uo(to)llee < C(A)(t1 = t0) 2 | fllzao ro)
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and for each i =1,--- ,d,

S O IV uillgy gy S o Buullzgs gy S Wbillegs oz I9rulluss
‘ il|lLge (C1HFP) i [Lqu(]Lf(’z) ~ IV i LZJ(L)P(E) ~ Vi ]Lqu(ILzﬁ) UL
and
1
[us(tr) = uilto)lleo < CA)(t1 = t0) 2 [1billges os) [ Osullse -

Summing up the above inequalities for 7 from 0 to d, we obtain

d

A2 || e oresy + D IVZuillgs: @2y < Cull fllgs @zo) + Caria [ Vulliz,

i=0

where C7, Cs only depend on T, ko, d, p;, ¢i, 5, and
1
[ut1) — ulto)llec < C(N)(t1 —t0)2 <H1||VU||L;° + |\|f“|iqT0(]i§g)>-

Choosing Cy = (C5/2)*/? v 1, we obtain (2.35) and (2.36) for all X > Com?/ﬁ. O

3. SDES WITH MIXED LP-DRIFTS

In this section we first establish a priori Krylov estimates for any solution of SDEs with mixed
drifts and for any index (q,p) € %1, where .# is defined in (2.14). Using this a priori estimates,
one can perform the classical Zvonkin transformation (see [46]), and then establish the weak well-
posedness under conditions (1.13) and (2.33). Moreover, we also obtain the two-sided density
estimates. As a byproduct, one improves the Krylov estimate to any index (g,p) € %, which is
crucial for the strong well-posedness and the propagation of chaos.

Let & be a given R?%valued measurable adapted process. We consider the following SDE:

X, = [& + b(t, X,))dt + o (t, X;)dW, (3.1)

where b: Ry x R — R? and ¢ : Ry x R? — R? @ R? are Borel measurable functions. We first
introduce the following notion of solutions, also called weak solutions.

Definition 3.1. Let 8 := (Q,.7,P,(F)i=0) be a stochastic basis, and & be a given R%-valued
measurable F-adapted process with fot |€s|ds < oo a.s. for each t > 0, and (X, W) be a pair of

continuous Fi-adapted processes. Let py € P(R?). We call (X, W,4) a solution of SDE (3.1) with
initial distribution po if

(i) po=PoXy" and W is a standard Brownian motion on L.
(i) For allt >0,

t t
/ |b(s,Xs)|ds+/ lo(s, X)|2ds < 00, a.s.
0 0

and

¢ ¢
X =Xo +/ [€s + b(s, Xs)]ds + / o(s, Xs)dWs, a.s.
0 0

By Theorem 2.7, we can establish the following a priori Krylov estimate (see [46]).

Lemma 3.2. Suppose that (1.13) and (2.33) hold. Then for any (¢,p) € S1,x€ Z and T,0 > 0,
there is a constant Cr s = Cr 5(0) > 0 such that for all f € LL(LP) and any solution X of SDE

(3.1) in the sense of Definition 3.1,
T T
E ( / f(s,Xs>ds> < fly @z | Crs + 0B ( / |ss|ds>] - (32)
0 0
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Proof. By Theorem 2.7 and as in [46, Lemma 5.5], for any (¢,p) € %1, x € 2 and T,§ > 0, there
is a constant C 5 > 0 such that for any stopping time 7 < T and f € L%(L2),

B ([ 106 5005) < Wlyay [on + o8 ([ e+ v xapas)]. 69)

Now for n € N, define a stopping time

t
Ty, = inf {t >0: / |b(s, X)|ds > n} NT.
0

Since (¢, p;) € H1, by applying (3.3) with f(s,z) = b;(s, ), we obtain

B ([ o X0las) < Wil gy | Ors 0 ([ 1+ e, Xoas ) |.

Summing up the above inequalities for 7 from 1 to d, we get

B ([ it x0ias) < s+ 08 ([ e+ 166, X )]

Letting 6 = 1/(2k;) and n — oo, we obtain

T 1 T
E (/ |b(8,Xs)d8> < f10r/em) + 5E / ([&s| + [b(s, Xs)[)ds |,
0 0

T T
E (/ b(s,Xs)|ds> < 261071/ (200) T E </ |§Sds> .
0 0

Substituting this into (3.3) with 7 = T', we complete the proof. O

which implies

In the above lemma, the requirement of (¢, p) € #; is too strong for applications. We need to
improve it to (¢,p) € H». Firstly, we use Theorem 2.9 and the above a priori Krylov estimate
to construct the Zvonkin transformation. For each i = 1,--- ,d, consider the following backward
PDE:

Ou; + 3tr((00™) - V2u;) + b+ Vu; — Mu; +b; =0, w;(T) = 0. (3.4)

By reversing the time variable and by Theorem 2.9, there is a unique solution wu; satisfying the

following estimates: for any 8 € (0,%), where ¥ is defined in (2.34), there are C, C; > 1 such that

for all A > Cor?’",

d
AEO=B) |l oo iy + D Vil @2y < Cir, (3.5)
j=0
and for all 0 <tg <t; < T,
[wi(tr) = wilto) oo < CN)[t1 — to]'/2, (3.6)
where
Ui = Wi + Uit + Uiz + -+ + Uid, (3.7)
and

4io = Gi» Pio = Pis Xio = X4, Gij = G5, Pij = Pj, Xij =X, j=1,--- . d.
Below we set
u:(u17"' aud)-
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By (3.5), for any 8 € (0,4), we can choose A large enough so that
IVullg < lluflugcis < 3-
Once A is chosen, it shall be fixed below without further notice. Now if we define
O(t,z) ==z +u(t, z),
then for each t,
x — ®(t, ) is a C'-diffeomorphism,
and
IVellLe + VO Ly < 2, (3.8)
and by (3.6), for all 0 <tp <t; < T,
[@(t1) = @(to) [l < C(N)(t1 — t0) /. (3.9)
We have the following result (see [46, Theorem 3.10]).

Lemma 3.3 (Zvonkin’s transformation). Under (1.13) and (2.33), Y; := ®(¢, X;) solves the fol-
lowing SDE

¢ ¢ ¢
Y, =Y+ / £ - VO(s,® 1(s,Y;))ds + / b(s,Ys)ds + / o (s, Yy)dWy, (3.10)
0 0 0

where Yy = ®(0, Xo) and
b(s,y) = Au(s, 27 (s,9)), G(s,y) = (o"Ve)(s, 2" (5,9)).
Moreover, for any 8 € (0,9 A7), where 9 is defined by (2.34),
b, Vb e Ly, ¢ € L¥(CP), (3.11)
and for some Ko > 1,
Ro 'lnf® <l (s,y)n® < Rolnl®, n € R7. (3.12)
Vice versa, if Y; solves SDE (3.10), then X; := ®~1(t,Y};) solves SDE (3.1).
Proof. For each n € N, define
u"(t,z) = (u(t,) * I'yp)(x), " (t,) =z +u"(t,z).

By Ito’s formula, we have

t

t
" (t, Xy) = 2™(0, Xp) +/ [£s - VO™ + ZD™(s, X)ds +/ (c*VO") (s, X4)dWs,
0 0

where
L =0, +tr(a- V) +b-V, a:=(0c0")/2.
Since = + u(t,z) is C*P-continuous, it is easy to see that for each ¢, z,
lim VI®"(t,x) = VI®(t,2), j=0,1.
n—oo

Therefore, to show (3.10), it suffices to show that as n — oo,
t
/ |[-Z®" — Aul(s, X5)ds — 0, a.s.
0
For m € N, we define the stopping time

t
T := inf {t>0: |Xt|+/ §S|ds>m}.
0
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Since 7,, — 00 as m — 00, it suffices to show that for each fixed m € N,

tATm
E (/ |Zo" — )\u|(s7XS)ds) =0. (3.13)
0

Note that by definition,
ZLP" — =0 u” +tr(a-V2u") +b-Vu" +b— \u
= [tr(a- (V?u) = I' ) — tr(a- V) = I ]
+ [b-V(uxTIy,)— (b-Vu)* I,
+[bo* Iy — 0] + [N * I, — )]
For each 1, j, since (gij,p;;) € #1, by the Krylov estimates (3.2) and (3.5), we have

(3.14)

tATm
B[ 19 - Ve Xds ) < Coll VAt~ ) Ly 2, 0.

From this and by (3.7) and (3.14), it is easy to see that (3.13) holds. Moreover, (3.11) and (3.12)
directly follow by their definitions and (3.5). On the other hand, if ¥} solves SDE (3.10), then by
similar calculations, X; := ®~1(¢,Y;) solves SDE (3.1). We omit the details here. O

Remark 3.4. Counsider SDE (3.1) with £ = 0 and assume (1.13) and (2.33). An immediate
consequence of Zvonkin’s transformation together with (3.8) and (3.9) is that for any p > 1 and
T > 0, there is a constant C' = C(p, T, ©) > 0 such that

E|X; — X,|* < C|t — s, t,5€]0,T). (3.15)
Now we show the following main result of this section.

Theorem 3.5. Suppose that (1.13) and (2.33) hold. For any py € P(RY), there is a unique
weak solution to SDE (3.1) with £ = 0 and initial distribution po in the sense of Definition 3.1.
Moreover, we have :

(i) For each t > 0, X; admits a density p;X (y) with the following two-sided estimate: for any
T >0, there are §1,Cy = 1 such that for all t € (0,T] and y € R,

cit _S1le—yl? (o Jz—y)?
le/z /R e Mo(dePf(yKW /R e T po(de). (3.16)

(ii) Let ¥ be defined as in (2.34). For any B € (0,9 Ay) and T > 0, there are §2,C2 > 1 such
that for all t € (0,T) and y,y' € R,

X (0 _ X (o) lo—yl2 le—y’|?
|pi (y)_ [jtﬁ(y )| < Czt_# [/ e o2t pio(dz) _|_/ o 5 po(dz)| . (3.17)
ly — v/ R4 R

(iit) For any (q,p) € F2 and T > 0, there is a constant Cy > 0 such that for any f € IE%(IE@,

T
E (/o f(SaXs)d5> < Comfmi;@gy (3.18)

Proof. By (3.11) and (3.12), it is well known that SDE (3.10) with £ = 0 admits a unique weak
solution (cf. [41]). The existence and uniqueness of weak solutions for the original SDE follow
from Lemma 3.3. Next we shall prove (3.16), (3.17) and (3.18).

(i) Let Z be the generator of SDE (3.10), i.e.,
Z=tr((65%) - V2)/2+b- V.
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By (3.11), (3.12) and Theorems 1.1, 1.3 and 2.3 of [9], there is a fundamental solution p(s, x,t,y)
associated with ., which satisfies the following estimates: for all 0 < s <t < T and z,y € R?,

C(;l *50771/‘2 < b ) < Co _(;l%y\?)
_— —s _— olt—s
(t_s)d/Qe \p(87$7 7y) = (t—S)d/ze ’
and for any B € (0,9 A7), and for all 0 < s <t < T and z,y,y’ € RY,

d _lz—yl? Jz—y’|2

(s, 2, t,y) — p(s, 2, t,y')| < Coly — ¢/ |P(t — 8)~ % | %009 4 50l

where dg,Cy > 1 only depend on © and the bounds of band . In particular, p(0,x,t,y) is just
the density of the solution of SDE (3.1) starting from z at time zero. Note that the density p} (v)
of Y; starting from the initial distribution fig = po o ®(0,-)~! is given by

pi (y) = /R (0,2, t, )0 (de).

This can be shown by considering a smooth approximation and taking weak limits (see [31, Section
5.1] for more details). We thus have that for any ¢ € (0,7] and all y,3’ € R?,

ot _dole=yl? _ Co Cle—yl?
tdo/z Rde T ho(dz) < p) (y) < W/Rde 5ot i (dx)

and

Coly — o' B _Jz—yl? ey’ ]
)= ot ) < Sl [ e e ) (3.19)
On the other hand, by change of variables, we have
i (y) = pl ((t,y)) det(VD(t,y)), (3.20)

and for some Cp > 1,

! _ 30l®(0.) = (t,p)|* x Cit _ 0@ -2y
TdO/Q L€ 7 po(dz) < pi (y) < td%/d e 3ot fi(dz).
R R

which together with the following two estimates yields (3.16),

(3.8)(3.9)
|©(0,2) — ®(t, y)* > §|®(t, x) — ®(t,9)]> — |@(0,2) — D(t,2)]* > gl —y> - Ct,

and

(3.8)(3.9)
|®(0,2) — ®(t,y)|* < 2|®(t,z) — B(t,y)|* +2|®(0,2) — &(t,2)]> <  8lz—y|* - Ct.

(ii) By (3.20) and (3.19), we have
o (y) = pi (W) < Ipi (R(t,)) — pi ((t,y")| det(VO(t, y))
+p) (2(t,1))] det(VE(t,y)) — det(VO(t,1)))

ly —v'|° ENEES YO I P RO TLN I
<= Ir
Syaer [, |6 T te [ He(de)

1 _lz—ew)® ,
s [T (@) Te () - Vel

which in turn implies (3.17) by (3.5).
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(iii) For nonnegative f € L4 (]LP) with (¢, p) € H, by (3.16) and (2.32), we get

(/st ) //fsyps Jyds
< /0 [ 1) (j/i / de‘“%éf’fuo(dz)) dyds

T
— C2(27T51)d/2 /d </O Ef(s,x — W(gls)ds> po(dz) < Cg|||f|||thT(H).

R

The proof is complete. O
As a corollary, we have the following important exponential integrability of singular functionals.

Corollary 3.6. (Khasminskii’s estimate) Let X be the unique solution of SDE (3.1) in Theorem
3.5. For any T,\ >0, (¢,p) € S and 5 € (0,2 — |%\ — %), there is a constant C; > 0 depending

only on T, A\, d, B, ko, K1, i, P;, ¢, P Such that for all f € IE%(IEQ),

T CillFIZ)
Eexp )\/ f(s,Xs)ds p <e b (50 (3.21)
0
Moreover, if b is bounded measurable, then for some Cy = Co(T, N\, d, B, ko, q,P) > 0,
T G ([1b]12se 2/8_
EGXP{A/ f(&XS)dS} < Lo (10l ey ) (3.22)
0

Proof. Let 8 € (0,2 — |%| - %) For (3.21), by [46, Lemma 3.5], it suffices to show that for any
0<ty<t1 <T,

ty
8
B ([ 6% 7)) < Colts — ) UMy (3.23)
(0]
Let % = %4— g Since 8 € (0,2 — |%| - %), we have (¢, p) € . By (3.18) and Holder’s inequality,
t1—1o 3
B ([ 56, X005) < Colfliy | cpy < Cottr — ) 1l g
By the Markov property of X;, we get (3.23). (3.22) follows by Girsanov’s theorem. O

Theorem 3.7. (Strong well-posedness) In addition to the assumptions, in Theorem 3.5, we
also assume (1.14) and that (¢;,p;) € #° in (2.33). Then there is a unique strong solution to SDE
(3.1) with £ =0.

Proof. By Yamada-Watanabe’s theorem, it suffices to show the pathwise uniqueness. But this

follows by Zvonkin’s transformation (see Lemma 3.3), Lemma 2.2 and (3.21) (see [46, Theorem

3.9] for more details). O
4. WELL-POSEDNESS OF DDDSDES wITH MIXED LP-DRIFTS

We consider the following distribution density-distribution dependent SDE (abbreviated as
dDDSDE):

dXt = b(thtapt(Xt)nU'Xt)dt+U(t7Xt)th7 (41)

where p;(z) is the density of X; and b(t,z, 7, u) : Ry x R? x Ry x P(R?) — R? is a measurable
function. As in Definition 3.1, we introduce the following notion of solutions to the above SDE.
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Definition 4.1. Let 3 := (Q, %7, P, (F)i>0) be a stochastic basis and (X, W) be a pair of contin-
uous Fy-adapted processes. Let pg € P(RY). We call (X, W, ) a solution of dDDSDE (4.1) with
initial distribution po if

(i) to =P o Xy ' and W is a standard Brownian motion on sl

(i) For each t > 0, the distribution px, of Xi admits a density pt,

t t
[ s, X o) s+ [ (s, X)Pds < 0, s,
0 0
and
t t
Xt:XOJr/ b(s,Xs,ps(Xs),uXS)der/ o(s, Xs)dWs, a.s.
0 0

Let 7' > 0 and Cr be the space of all continuous functions from [0, 7] to R?. We use w to denote
a path in Cy and by w¢(w) = w; to denote the coordinate process. Let B; := o{ws,s < t} be
the natural filtration. We also introduce the following notion of martingale solutions to dDDSDE
(4.1).

Definition 4.2. Let g € P(RY). A probability measure P € P(Cr) is called a martingale solution
of dADDSDE (4.1) with initial distribution po if Powg® = po and for any f € C2(RY), the process

M/ (w) = f(wt)—f(wo)—/ (%tr((ao*)(s,ws)-Vz)—l—b(s,ws,ps(ws),us)-V)f(ws)ds (4.2)
0

is a Bi-martingale, where s :=Pow ' has a density ps(x). We shall use ///50’17 to denote the set
of all martingale solutions of dDDSDE (4.1) associated with o,b and initial distribution .

Remark 4.3. It is well known that weak solutions are equivalent to the martingale solutions
(see [41]). If we consider the classical SDE, i.e., b only depends on (¢, z), and if for each starting
point (s, z), there is a unique martingale solution starting from (s, ), then as usual, we say the
martingale problem is well-posed.

4.1. Relative entropy. In this subsection we recall the notion and some basic facts about the
relative entropy. Let E be a Polish space and u, v be two probability measures on E. The relative
entropy H(u|v) is defined by

du du
—lo (—)du, L v,
Hply) =< Jg dv s\ H

0, otherwise.

(4.3)

Since x — xlog x is convex on [0, 00), by Jensen’s inequality, we have H(u|v) > 0.
The following theorem contains the main tools used below (see [4, Theorem 2.1(ii)], [12, Lemma
1.4.3(a)] and [10, Lemma 3.9]).

Theorem 4.4. (i) (Pinsker’s inequality) For any two probability measures p, v,

e = )30 < 2H(ulv). (4.4)
(i) (The weighted Pinsker inequality) For any u,v € P(E) and Borel measurable function f,
(v P2 <2 (1 +log | ef<w>2u<dx>> H(plw). (4.5)
E

(iii) (Variational representation of the relative entropy) For any u,v € P(E),

H(plv) = sup </ wduflog/ e’/’dy) , (4.6)
PYEBL(E) E E
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where By(E) is the set of all bounded Borel measurable functions.

(iv) (Dimensional bounds on entropy) Let uN be a symmetric probability measure on EV and
w € P(E). Then for any k < N,

2k

5 H @), (4.7)

where p™'F is the marginal distribution of the first k-component of u .

H (™ F|p®F) <

We recall the following entropy formula for the martingale solutions of classical SDEs, which is
a consequence of Girsanov’s theorem (see [27, Lemma 4.4 and Remark 4.5] for the most general
form).

Lemma 4.5. Fori = 1,2, let b’ : Ry x R? — R? be two measurable functions. Suppose that the
martingale problem associated with (o,b%) is well-posed (see Remark 4.3). Let pg, ug € P(R?) be

two initial distributions. For any two martingale solutions P; € MZ;U, 1=1,2, and any t > 0, if
0

we let pt == P; ow; ' be the marginal distributions, then

1 b
M) < 1) + 557 ([ lo7 w015, - (s, ) Pas).

4.2. Stability of density. In this section we prepare a stability result about the density of classical
SDEs. Our starting point is the associated Fokker-Planck equation. Fix z € R?. Let

AD = / A(r, z)dr with A(r, z) = (ai;(r, 2)) = ((00%):5(r, 2)) /2.

Let PZ,f(x) be the Gaussian heat kernel associated with AZ,, i.e.,

Pof@) = [ haz, (= 0 r )

where for a symmetric positive definite matrix A,
ef(Aflm,x)/2
hA(l') = e—_—_—_
(2m)? det(A)
Lemma 4.6. Let 3€[0,1], k € Ny, p € [1,00]? and x € 2. Under (1.13), for any T > 0, there
is a constant C = C(T,d, 8, k,p, ko) > 0 such that for all0 < s <t < T and 0 < f € LP,
L p_|L
IVEPZ (- 1PH)(0)] < C(t — )2 P15V Iy

Proof. First of all, by definition and (1.13), it is easy to see that for some A > 0,

|z|2 &
2

k+d __ _1x|7 _ da
VFhas (2)] S (t— )" F e X3 = (t— )75 (200 Egagrmg (@),

and for some \ > )\,

[NE

VPP DO =75 [ ool f0)d

[N]]e)
[NE

SE=984 [ o))y

Let p’ € (1,00)% be defined by % + ﬁ = 1. Fix r > 0. By Holder’s inequality we have

1
/Rd I (t—s)(y) f(y)dy = |Bg|/Rd /Rd In—s) (W) (y) f(y)dydz
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< 1577 L, 1orovion g 1oz g

1
< — Lprgrr—o | »d - 48
a7 (L Mzl g ) 11y (4.8

Below, without loss of generality, we suppose s = 0. By a change of variables, we have

_d L2
/ 1 pegaill,prdz = (2mAe) / 11 pre™ 5| prdz
Rd x Rd *

1
- d
_ phlyil? i 4
e” x dy; dz; =172 H Ti-
i=1 YR \Vlyi—zil<r ;

1 1

! 7

A Py A Py
Ji = e~ x dy; dz; + e~ x dy; dz;

lzi|<2r \/|yi—zi|<r |zi|>2r lyi—zi|<r
1

_ phlyil? ] iz l—m)? Pi

e” xt dy; dz; + e bY: dy; dz;
|z;|<2r R |zi|>2r |lyi—zi| <7

Py \yz % phlz; 12 L 1 1 -1
< e dy; + [ e T dy St 4t St =42 P,
R R

For each i, we have

N

Hence,
d d 1 1 1
J I e e § i e
Rd * i=1
Combining the above estimates, we obtain the desired estimate. O

The following stability result shall be used below to show the existence and uniqueness.

Lemma 4.7. Let by, by be two Borel measurable functions satisfying (2.33) and for k = 0,1,
pr(de) = pp(x)da with p € L>°. Let P, € M3 be the unique martingale solution and py(t, )
be the density of the coordinated process wy under P. Then for any T > 0, there is a constant
C =C(T,0) > 0 such that for all t € [0,T],

d t
SNSRI I i
Io0(®) = pr(6)le S llog = ol + 3 [ 6= 9 FTE R s) < (@l ds. (49)
i=170 ’
Proof. First of all, by the heat kernel estimate (3.16), we have for all ¢, y,

& =y o
put9) < gk | T pa)de S oo, k= 0.1 (110)
Note that py solves the following Fokker-Planck equation in the distributional sense:
8tpk = 3iaj(aijpk) + diV(bkpk), k= 0, 1,

where a = 00*/2 and we use the Einstein convention for summation. Below we use the freezing
technique to show our result. Fix z € R%. For a function f, we set

T.f(x) = f(x+2), L, x):=po(t,z)— p1(t, ).
By the invariance of shifting the spatial variable z, we have

Oyl = 0;0;(T2047:0) + div(T.bo720) + div(T.(bo — b1)72p1)
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= a;j (t, Z)@iaszf + aiaj((rzaij — Gy (t, Z))ng)
+ div(1,007,£) + div(712(bg — b1)T2p1).

By Duhamel’s formula we have

t
mA(t,x) = P547.4(0, ) +/ PZ,(0:05((12ai; — aij(s,2))7.L)) (s, x)ds
0

¢ t
+ / PZ,div(7.007.£) (s, z)ds + / PZ,div(r.(bo — b1)T2p1)(s, z)ds.
0 0

By (1.13) and Lemma 4.6 we have

t
|[T:A(8,0)| S [Fg,,7-£(0,0)] +/ (t =) 7 |7li=ds
0

d t 1 1 .
+> / (t—s) 2B b rllep.ds
i=170 '
d t 1 1 . .
+Z/o (t = ) 215D (b — )7l d.
=1

Noting that

I7=bom=tligz: < I7=bollge: 7=l < fa i€l
and by (4.10),
I7-(86 = b)7epallze: < = (b) — b1z lI7=pr e

= 1% — Bl

pillie < llog — by lzz: 12 lle,

we further have

t
[€@) Lo = sup [7=£(L, 0)] < [1€(0)]|re~ +/0 (t =)= He(s) L=ds

d t

#30 [ 6= TH D ()i
i=1"0
d t 1 1 . .

+30 [ (=D g
=1

By Gronwall’s inequality of Volterra’s type (see [47, Lemma 2.2]), we obtain the desired estimate.
0

4.3. Well-posedness of dDDSDEs. Now we are ready to prove the main result of this section.

Theorem 4.8. (Weak well-posedness) Suppose that (1.13) holds and for any T > 0 and i =
1,--+,d, there are indices (q;,p;) € S° and x; € X such that

sup  [sup by, )l oy < (4.11)
peC([0,T];P(R4)) >0 7 (L

and for some h; € L% (L%) and for all t,x € [0,T] x RY, 7,7/ > 0 and p,v € P(RY),
o' (t, 2,7, ) — b (t, 2,7, v)| < it ) (Ir = 7/| + || — vlvar)- (4.12)

Then for any probability measure po(da) = po(z)dz with py € L°, there is a unique weak solution
(X, W, A), or equivalently, a martingale solution to dDDSDE (4.1) with initial distribution po.
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Proof. We divide the proof into three steps.
(Step 1). Let p? = g for any ¢ > 0. We consider the following Picard iteration: for n € N,

AXD = bo(t, XM)dt + o(t, X2)aWs, X2 D o, (4.13)

where
bu(t,2) == b(t, x, " (@), up ™),
and

p ! is the marginal distribution of X*~!, which has a density pf' . (4.14)

By (4.11), one sees that for each i =1,--- ,d,
sup 16 Iy o2y < 1 (4.15)
Thus, by Theorem 3.5, for each n € N, there is a unique weak solution (X", W™, ") to SDE
(4.13), where
= (Qn,gnapn7 (ytn)t20)7

and for each ¢t > 0, X" admits a density p} satisfying the following estimate: for all (¢,y) €
[0,T] x RY,

n O _Il'ﬂA2
PP < s | e po(x)de < Ilpolloo. (4.16)
14/2 Jpa

Moreover, for any T' > 0, by (3.15), there is a constant C' > 0 such that

SupEPn‘X? 7X;L|4 < C|t - 5|27 $7t € [OvT]a

and by (3.18), for any (qo, py) € F2, there is a constant C' > 0 such that for all f € IE%? (L&),

supEF </ Fls, XM ) Cllfllgo czo - (4.17)

In particular, by Kolmogorov’s criterion,
the laws P, of X in Cr are tight. (4.18)

(Step 2). For simplicity of notations, we write

Lo (t) = 110F = pi" L + ot — " [l
Noting that by (4.12) and (4.14),

b7, (s, ) = by (5, 2)| < hals, @) (192~ (@) = p 7 (@) + e ™" = 6 lvar) < hi(s, @)D nm-1(5),

we have

167,(s) = b ()llgzs < Mhi(9)lge: Cn1.m—1(s) =t i(s)Tn1,m—1(s). (4.19)
Since (%4, %:) € %, by Lemma 4.5 and (4.17), (4.19), we have

M) < SEF (/ o (0B s102) = b5

-1
< lo HOOEP </ |6y, (8, w5) — (s,ws)|2ds>

‘ 2
i i i/2 '
<3 ([ 1 - Pz s

i=1
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| |
Q
?

I
q
;
S
\/

By Pinsker’s inequality (4.4), we get

1
ot = P lue = Nl = 1 llvar S Z (/ ) 1(s)ds> . (4.20)

On the other hand, by (4.9), (4.19) and Hoélder’s inequality, for ¢} =

17

d

t
lor — ol <Y / (t—s) 205D, (5)ds

170
" (/Ot(t_s)_m g DdS) (/otf?% L C >d8)é
a

<y (/0731( . As)ds)ql",

=1

which together with (4.20) yields

nm SZ(/ éql Fgll 1,m— I(S)dS) i .

i=1

%

&=

A
.M&

K2

Let ¢ =q1 V-V qq. By Holder’s inequality with respect to £ (s)ds, we get

d -1

S ([ ) ([ o)

/Ze% 1 (s)ds,

Therefore, by (4.16) and Fatou’s lemma,

T, / Z@?i(s) T (5)ds,
=1
which implies by Gronwall’s inequality that for each ¢ € [0, T,
(o = e + lef = pllue) = T TE () =0, (4.21)
Now by (4.18), there is a subsequence ny such that as k — oo,

P, weakly converges to some P € P(Cr),
and by (4.21), Pow; '(dz) = pus(dz) = ps(x)dz and for each t € (0, T,

T (llof — pelle + 1l6f — pellcs) = 0. (4.22)
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(Step 3). In this step we show P € /\/lz;)b. More precisely, we want to show that for fixed

f € C%(R%), the process Mtf defined by (4.2) is a Bi-martingale under P, that is, for any ¢y < ¢;
and every bounded B;,-measurable continuous function 7,

E((M/ — M])n) =o0. (4.23)
Note that for each k € N, by SDE (4.13) and Ito’s formula,
Ef (Mf — M[)n) =0,
where
ME = fw) = Flwp) — / " (66(an, - V21) + by - V1) 522}

Since x — ap, (s,x) is continuous, to show (4.23), the key point is to prove the following:
t1 tl
gim B ([, (s 5,05 ) = (0 [ bs, 00,0 9005
—00 to to

which follows from:

ty
i sup P ([ o) = b ). s ) = (124)

m—oo to
together with
t1 t1
kli_{n EF7 <77/ bn,, (s,ws) - Vf(ws)ds) =EF (77/ by, (s, ws) -Vf(ws)ds> (4.25)
oo to to

for each m € N. The first limit (4.24) follows by the Krylov estimates (4.17), (4.12) and (4.22).
For the second, let

b, (s,x):=by,, (s,) x I(x), €€(0,1),

where I is the mollifiers in (2.7). For each ¢ € (0, 1), since x — b;, (s, ) is bounded continuous,
by the weak convergence of P,,, , we have

i 57 (0 [0, ) Vs ) <87 (o [0, o) Wiwas). wao)

k—o0 to to

Moreover, for each m € N and R > 0, by the Krylov estimate (4.17), we also have

t1
lim sup EF»x (/ 165, = bn,, (8, ws) |1} <Rd5>
e—0 k m ) s

to

. (4.27)
S gl_%z 165, = bn,) Lppllpz ey =0,
i=1
and
t1
lim sup EP« </ b5, —bnm|(s,ws)]l|wg|>Rds) =0. (4.28)
R—o0 ke to m :

Combining (4.26), (4.27) and (4.28), we obtain (4.25). Thus we complete the proof of existence.
On the other hand, by the same calculations as in (4.21), one can show that any two weak solutions
have the same marginal distribution. Then by Theorem 3.5, we get the weak uniqueness. O
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Remark 4.9. If b does not depend on the density variable r, then we can drop the assumption
to(dx) = po(x)dx. In this case, we can only use (4.20) to show that p} is a Cauchy sequence.
We note that a similar result has been shown in [44]. However, even in the non-mixed norm case,
the results in [44] do not cover our case since we are using the total variational norm in (4.12).
Moreover, our proofs are based on the Fokker-Planck equation, and Wang’s proofs are based on
the backward Kolmogorov equation.

Theorem 4.10. (Strong well-posedness) In addition to the assumptions in Theorem 4.8, we
also assume (1.14). Then there is a unique strong solution.

Proof. This is a direct consequence of Theorems 4.8 and 3.7. O

5. WEAK CONVERGENCE OF PROPAGATION OF CHAOS
Throughout this section we assume (H?) and (H®). Let
XN = (xM o XN WY = e Y,

and for x = (2',--- ,2"), define

1 & : 1 & :
B(t7 ):: F tv 177 ¢( 17 ]) P 7F t7 Nai (b( Na ]) ) (51)
X ( T sz:; H(x, o ) ( T N; (Y, x )

and a (dN) x (dN)-matrix o by
o(t,x) := diagy (a(t,zt),--- ot z™)). (5.2)
Then the particle system (1.1) can be written as an SDE in RV:
dXY = B(t, XN)dt + o (t, XN)dW.

Noting that by (HY),
N

. K . .
[Bilt, )] < bt 2') + 5 Y (e’ 2?)),
j=1

we have for p = (co,---,00,p) € [1,00]% and for x; = (--- ,xi~ L L ... N 2P)
%
< Q.

T
| s o lga

) - < ~
1Bl oz < Wihigop o | [ s

Then, by Theorem 3.7, for any initial value X{', there is a unique strong solution to the above
SDE. In particular, there is a measurable functional ® : R4 x C& — C¥ such that

XN =o(XY, WN)(t), telo,T). (5.3)

5.1. Martingale approach. In this section we use the classical martingale approach to show the
following qualitative result of weak convergence.

Theorem 5.1. For any N € N, let &V - - ,5% be N-random variables and po € P(R?). Suppose

that the law of (€, , €N is invariant under any permutation of {1,--- , N}, and for any k < N,
Po (¢, &))" = udk, N - o (5.4)
Then for any k < N and T > 0,
N,1 N,k \—1 ®k
Po (Xt Xpw) T = udk N = oo, (5.5)

where juo, 1) is the law of the unique solution of dDDSDE (1.2) with initial distribution o on Cr.
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First of all, we use the partial Girsanov transform as used in [21, 43] to show some uniform Krylov

estimate for particle system (1.1). Let {W;,z € N} be a sequence of independent d-dimensional
standard Brownian motions. For each z € RY let Z;(x) be the unique strong solution of the
following SDE starting from x:

AZ; = o (t, Z,)AW}, Zy = =

For each z = (22,--- ,2N) e RIN-14 et ZN(2) := ZN .= (ZN?,--. | ZV'N) be the unique strong
solution of the following SDE starting from z:

AzMr =o(t, 2" gy )dt + o (t, 20 AWk, Z)0r = 2,
where k=2,---, N and

| X
nx(dy) := WZ(L; (dy).

In particular, as Brownian functionals of W' and (W2, e ,WN ) respectively,
Z.(+) is independent of Z™(.), (5.6)
and by the notion of strong solution of SDEs (see (5.3)),
X =20, (X3 XN =20 ) = Y (5.7)
solves the following SDE:
AT = ot XYWL, R~
and for each k =2,--- | N, (5.8)
AXMF = 0(t, XVF y ) dt + o (8, XOF)dWE, X0 =€,
where

1 N
nyé\f = N Zé;{tz\u (dy)
j=2

Now let us define
N
1 ~ _ ~
mgy (dy) = 5 D Ogwa(dy), HYi= o (6, X0 7 0(L X ngy),
j=1

and for k=2,--- | N,
HS i o8 T2 7 b0 T ) — b X )|
By the above definition, we clearly have for each ¢ =1,--- | N,
AXP = b(t, XV ng ) dt + o (4, X0) (AW] — H ). (5.9)

The following uniform estimate is the key step for performing the Girsanov transform to derive
the Krylov estimate for the particle system, whose proof strongly depends on the independence in
(5.6) and the strong uniqueness used in (5.8).

Lemma 5.2. For any v,T > 0,

N T
sup E exp {’yZ/ |HtN’l|2dt} < 0. (5.10)
N — Jo



PROPAGATION OF CHAOS OF MCKEAN-VLASOV SDES 31
Proof. For z € RY and y = (y%,- -+ ,yN) € RV let us write 1, = + Z;VZZ dyi and define
itz y) :=o(t,z)"'b <t,:£, % + ny> ,
and for k=2,---, N,
Lyt z,y) = o(t,y*) " {b (t,y’“, % + ny> —b(t,y", ny)} :
From the very definition, one sees that for each i =1,--- | N,

HN' =T(s, XM vY),
and by (5.7) and (5.6),

N T T N
E exp {WZ/ |H£V’i|2ds} = Eexp {’y/ Z|Fi(s,Zs(§{v),YéV)|2ds}
i=170 0 =1

T N

=FE (Eexp {’y/ Zri(&zs(x)aystdS}
0 =1
T N

< supEexp {’y/ Zri(svzs(x)ays)FdS}
0 =1

(af7y.)=(f{V7Y.N)>

z,y.
T
=supEexp 'y/ Ty (S,Zs(x))ds , (5.11)
z,y. 0
where for Yy = (ys)se[O,T]v
N
fy(s,z) = Z T (s,x, ys)|2.
i=1

Note that by (1.15) and because ¢¢(x,z) = 0,

N
‘Fl(t’ Z,y)‘ = U(ta x)ilF t,z, %(qﬁt(xa ‘T) + Z |¢t(x7yj)|>

j=2
K N
— 1 ;
<o oo | hlt2) + 523 duty?) |
j=2

and
Fillo oo

N |¢t(yk7x)|a

‘Fk(taxa y)' <

and by (1.16),

T 1/q
(/0 sup [[T (¢, wy)llfgpdt> < Nlo™ Hloo (1 + #1)
v 5

and

T a 2| ,—1
rillo™ oo
sup [Ty (t, -, y)lL,dt | < -
([ L V1



32 ZIMO HAO, MICHAEL ROCKNER, XICHENG ZHANG

From these two estimates, by Minkowskii’s inequality, we derive

T 2/q N T 2/q
( / sup | fy. (s, >||;;§32dt> <Z< / sup ||[Ti(t, - ) ||;£%dt>
Y — Y

2/q
Z(/ sup [T (t, - )II, dt)

—12 212 "411
<ot (G + )2+ 51,

Thus, because (1,%) € %, by (3.21) we have

T
sup E exp {'y/o fy(s, Zs(x))ds} <C,

@y
which together with (5.11) yields (5.10). O

Now if we define

N t o 1 N t )
&N = exp{Z/ HNAQW! — 52/ |H§V’Z|2ds},
i=1 70 i=170

then by (5.10) and Novikov’s criterion, t — Z; is an exponential martingale and

N t .
N4 Z/ HNigNaw!,
i— 0

Thus, by Girsanov’s theorem, ( fo H; N, ’ds) teo, T]’N are N-independent standard Brownian
motions under the new probablhty measure
Q:=&NP.
Moreover, by (5.9) and the weak uniqueness for SDE (1.1), we have
< -1 -1

Qo (X{.ry)  =Po(XQr) (5.12)

and for any v € R, by (5.10) it is standard to derive that
supE | sup |&N]7 ] < oc. (5.13)
N te[0,T]

From these, we can derive the following crucial Krylov estimate for the particle system.

Lemma 5.3. (i) The law of (XtN’l)te[oyT], N €N, in Cp is tight.
(ii) For any T >0, (q,p) € S and x € X, there is a constant C; = C1(T,0) > 0 such that for
any f e LL(LR),

T
supE </ f(t,XtN’l)dt> < Cullfllgs, @zys (5.14)
0

and for any A >0 and 5 € (0,2 — |1| ) there is a Cy = Co(T,0, A, 5) > 0 such that for
any f € LE(LB),

r N C2M 125
sup E exp )\/ f(6, X, )dt p <e L @) | (5.15)
N 0
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(iii) Let py,py € (1,00)% and let ¢ € (1,00) with |pi1| + ‘p%' +% < 2 and x1,%x2 € 2. Then for
any T > 0, it holds that for some C3 = C5(T,0) > 0,

T
SupE < /O f(t,va’l,XfV’z)dt> < Csllfllzs 21 22 (5.16)

where L% (L2 (LE2)) is the localization of LL(LE! (LE2)) as in (2.5).

Proof. (i) By (5.12), Holder’s inequality, (5.13) and (5.8), there is a constant C' > 0 such that for
all0<s<t<T and N € N,

B - X0 = B R - X
< (BEN ) P RIZNT - XN < ol - s,

which, together with (5.4), implies the tightness by Kolmogorov’s criterion.
(i) Let v > 1 be such that (,2) € %5. By (5.12), Hélder’s inequality, (5.13) and (3.2), we

have
r N,1 . N r oN,1
E( /O £t X )dt>_1E<gT /O £t X )dt)
Ny5= ! XNy |y
< [E@&)7] E(/ £t X dt)]

1
< OIS iy = Ol ey

1-1/+ 1/~

(5.15) follows by the same method and (3.21).
(iii) Let v € (1, min;(p14, p2i) A q) be such that |
inequality and (5.13), we have

T T
E ( / f(t,Xiv*l,Xi“)dt> =E (amTN / f(aXi“%Xi”)dt)
0 0
y—1 T _ _
E ( / f(tXiV’l,X?”Q)”dt)]
0

r N2y 1y i
E(/ (. Z(), X)) dt)

< [E@)™|
1
< 2, one can choose q1,q2 > 7 so that

< 2. By (5.12), Holder’s

1
p1/7| + |P2/7‘ + Q/v

==

< sup

x

By |p/'y|+|1’2/v|+q/’y q/’y+m71+q/77and

(/7. Di/7) € Fa, i = 1,2. Since Z.(z) and X2 are independent by (5.6) and (5.7), and satisfy
the Krylov estimate (5.14), the desired estimate now follows by using [37, Lemma 2.6]. O

In the following, in order to take weak limits, we need to mollify the coefficients. For € € (0, 1)
and k € N, we define

bei(t, @, 1) = Fe(t, 2, (6f ® p)(2)), (5.17)
where
F.(t,z,r) = (=" )V ((F(t,",r)« I.)(z)) Ae™*
and

¢f(a:,y) = (=k) Vv ((¢t * H/k)(x,y)) Nk.
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We have the following properties for the above approximation.
Lemma 5.4. (i) b.j, € L (Cp(RY x P(R?))) and
ek (t 2, )| < By x (@) + ko (6 @ p) * I ()

and
b= bel(t, 2, 1) < sup |Fe = F(t,2,7) + kol (¢ — be) @ pl(2).
r|<k
(ii) For any T > 0,
T
lim lim supE / b — b k| (s, XDt pxw )ds | = 0. (5.18)
k—ooe—0 N 0 ° s

Proof. (i) is obvious by definition and the assumptions. We now show (ii). Note that
N
|b - bs,k|(SaXiv’l,nXN) < sup |F€ - F‘(S,Xév’l,T) + % Z |(blsC - ¢s|(X£V’1aXév’j)' (519)
T sk

We first show that for fixed r € R™,
T
lim supE (/ |F. — F|(3,Xév’1,r)ds> =0. (5.20)
e—0 N 0

Let R > 0. Since (£,%) € % and ||F(.,
and (5.14), (2.8), we have

T
1) (/ |F. — F|(5,X£V’1,r)]l|Xév,1|>Rds>
0
1
T 2 T
< [IEJ (/ |FE—F|2(s,X§V’1,r)ds>] V P XN > R)ds
0 0
<||F. - F 1/2 TIPXM1 XM s By 4 p(xVY > &
NH” e ‘ )l”Lq/Z ]Lp/z 0 (l s - 40 E)—i_ <| | 5) ds
T N.1 N,1
E[X — Xo | N,1
SIEC gy @z UO ( 7 +P(|X,

> I;)) ds] ’
C

1
2
SIFC DIy |5+ 2> )] 20 Ro s (5.21)

j=1
< oo by (1.15) and (1.16), by Holder’s inequality

2
) ||| Egp (EE)

2

On the other hand, for each R > 0, by (5.14) again, we have

T (2.9)
E( / [F. = F(s, XY 1)1 g0, s ><|||<F F) (1) Lply gy — 0. € 0,

which together with (5.21) yields (5.20).
Since |F.(t,z,r) — Fe(t,z,7")| < ko|r — |, by (5.20) and a finite covering technique, for each
k € N, we further have

T
lim sup E (/ sup |F. — F|(S,XSN’1,T)ds> =0. (5.22)
0

e—=0 N Ir|<k
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Indeed, for any given § > 0, one can find M-balls in R™ with centers in {r;,i = 1,--- , M} and
radius d such that

{r Ir] < k} C Ui=1,... . mBs(ri).
Thus,

T M T
E (/ sup |F. — F|(5,X£V’1,r)ds> <) E (/ |F. — F|(s7X§V’1,ri)ds> + Koo.
0 =1 0

Ir|<k

By (5.20) and firstly letting e — 0 and then § — 0, we get (5.22).
Moreover, for j # 1, since

T T
[ 16t oo xas) < [M1et - ot xdo).
0 0

as in proving (5.20) and by (1.16) and (5.16), we also have

T
lim supE (/ |k —ml(Xé“l,XéV’Q)ds) =0,
k—oo N 0

and because ¢4(x,z) = 0 and (5.14),

T
lim supE (/ |¢§|(X;V’1,Xév’1)ds> =0.
k—oo N 0

Hence,
T .
lim sup sup E / |pF — ¢ |(X N1, X Ndyds | =0,
k—oo N j=1,---,N 0
which together with (5.22) and (5.19) yields (5.18). O

Now we are ready to give the

Proof of Theorem 5.1. Consider the following random measure with values in P(Cr),

w — My (w,dw) N;éxwlw)(dw)

By (i) of Lemma 5.3 and [42, (ii) of Proposition 2.2], the laws of IIy, N € N, are tight in
P(P(Cr)). Without loss of generality, we assume that the laws of Iy weakly converge to some
Il € P(P(Cr)). By (5.14) and (5.16), it is standard to derive that for any (¢,p) € # and
f e LL(LE) (see [46, Remark 3.4])

/CT)/CT (/ f(s,ws)d ) v (dw)T (dv)

and for any p;,p, € (1,00)? and ¢ € (1,00) with \p%| + \i| —|—§ < 2, and x1,%x2 € 2, f €
L§ (L5 (LR)),

/P<CT> /CT /CT (/OT f(s’ws’wé)d*S) v(dw')v(dw) s (dv)

Our aim below is to show that Il is a Dirac measure, i.e.,
co(dv) =6, (dv), I —a.s.,
where p € Mbe is the unique martingale solution of dADDSDE with initial distribution puy.

< Cllflles czy (5.23)

< C|||f|||EqT(]]j§i @r2)) (5.24)
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We divide the proofs into two steps.
(Step 1) For given f € C2(R%) and v € P(Cr), we define a functional on Cr by

t
M7Lw) = flon) = fluwo) = [ L2 f(sw)ds, 1€ .7
where
.,Sflj”bf(s,m) = %tr(oa* “V2f)(s,2) +b(s,z,vs) - Vf(x),
and
vs :=vow, ' is the marginal distribution of v at time s.

Fix n € N. For given g € CO(R”d) and 0 < 51 < --- < 8, < 8, we also introduce a functional E?
on P(Cr) by

=9(0) = /C (M2 (t,w) — MTE(5,0)) g(war -+ w5, J(dw).

In particular,

N

—_ 1 o 7 o 7 7 A

EHIy) = 5 > (M7, (6, X5 = Mg (s, X¥))g (X4, X]) (5.25)
=1

and
-1 _
Iy ows ™ =nxw.

Noting that by It6’s formula,

t t
MEE (X = XN - Fx) - / L2 (s, X Vi) ds = / (0" - V1) (s, X)W,

by (5.25) and the Itd isometry for stochastic integrals, we have

2
N t
— 1 . , ) ; )
E":‘?(HN)P = WE Z/ (U ' vf) (rﬂ X7]‘V7z)g(X‘£\177Za U 7X;V,,L7 )dW;
i=1""%
1 Nt 2
* N,i N,i N,i
= > [l I Xk X Far
i=1v%
1 *
< jt=9)lo™ VA9l (5.26)
Suppose that we have proven
A}iinooE\E-‘}(HNﬂ :/ |E?(1/)|Hoo(du). (5.27)
P(Cr)

Then by (5.26) and (5.27), for each f € C2(R?) and n € N, g € Cy(R"™),

/7’(CT)

Since CZ(R%) and Cy(R") are separable, one can find a common Il,-null set N” C P(Cr) such
that for all v ¢ N and for all 0 < s <t < T, f € C3(R?) and n € N, g € Cp(R"?),

E4(v) = (M}i’f(t,w) - M}T)’f(s, w))g(ws,, -+, ws, )v(dw) = 0.
Cr

Moreover, by (5.4) and (1.9), we also have
Mo{r € P(Cp) :v9 = o} = 1.

E4 (V)Mo (dv) = 0 = E%(v) = 0 for lls-a.s. v € P(Cr).
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Hence, for II,.-almost all v,
o,b
veM.
Since ./\/lz’ob only contains one point by uniqueness (see Theorem 4.8), all the points v ¢ N are the
same. Hence, Iy weakly converges to a one-point measure. By [42, (ii) of Proposition 2.2], we

conclude (5.5). Thus it remains to show (5.27).
(Step 2) Let b, i be defined by (5.17) and define

— o,be. o,be
Zek(v) = /C (M (8 w) — MY (5,0)) gy -+ w5, ().
T

By b € L (Cp(R? x P(R?))), we have
Hek € Cy(P(Cr)), Ve>0,keN. (5.28)
Indeed, note that

2a) = [ (1= s+ 5 [ o 0w ) o o)

t
+ [ ( / <b5,k-w><r,wr,mdr) Gway, - we, (dw) = Q) + ER ).
Cr s

Since f € C? and o, g are bounded continuous, we have 521,1 € Cy(P(Cr)). For Ef,)c, since it is a
non-linear functional of v, we have to take some care for the continuity of v — = 2,1(1/). Suppose

that v, € P(Cr) weakly converges to v € P(Cr). By definition, we have ’

/(CT (/st(bg’k VI wr, VT)dT) g(Wsy, s ws, ) (Vim — V)(dw)'

t
sl el [ ([ 16k =) lwar ) () = 160+ 1)
(CT S
where we have used that
|F5(Ta z, 81) - FE(Taxa 82)| < K:O|51 - 32|-
For I,Sll), we clearly have

lim IV = 0.

m—r o0

For I,(,%), by the dominated convergence theorem, it suffices to show that for each r € [s, ],

lim |0F @ (Vm — V)| (w0; )0 (dw) = 0,
Cr

m—r oo

which follows by noting that (see the proof of (5.22))
lim [¢F @ (v — v)r|(x) =0, z € RY,
m—r0o0

and
lim sup |(¢7’f ® U r)(T) — (4257]? ® V) (y)| = 0.

|[z—y|—=0 m

Thus we get (5.28), and so,

lim E|E. (Iy)| = / IE (1) Mo ().
N—oo P((CT)
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On the other hand, we note that

2a) =240 = [ ([ 6 beatrin) T0ar ) o v, ol

and

N t
1 ,
Zex(Ily) = Z5(IIN) = - D (/ ((b—bg7k)~Vf)(r,XTN”,nx£y)dr> (XN X ).
i=1 WS

By (5.18), we have
lim lim sup E|Z. ;(Ily) — E5(Ty)|

k—ooe—0 N

¢
< |IVFloollglloo lim lim sup E </ |b— bs,k|(T,XT{V’17nXN)dT> =0,
k—ooe—0 N s "
and by (5.23) and (5.24), as in showing (5.18),

lim lim |Zek(v) — E(v) o (dv)
k—o00e—0 P(Cr)

< IV lloollglso hm hm / / [b = be i |(s, ws, vs)ds | v(dw)s(dv) = 0.
P(Cr) JCrp 0

Thus we obtain (5.27) and the proof is complete. O

5.2. Entropy method. In this section we recall the entropy method used in [20] to show a
quantitative result for weak convergence when the interaction kernel is bounded measurable, which
is essentially contained in [20]. For the completeness of the paper, we provide a detailed proof. We
first prepare the following lemma.

Lemma 5.5. Let ¢ : R x RY — R be a bounded measurable function with ¢(x,z) = 0 and
&:= (&, - ,&N) be a sequence of independent identical distributed random variables. Set

o(z,y) = d(x,y) — (¢ ® p) ().
Then for any A < W’
EerNI(@@ne) (el ¢ ¢,

where ne(dy) == 3 Yo, Je, (dy).-
Proof. Note that by Taylor’s expansion,

AN [(d@ne) (€1)1* _

AN
G EmE) =3 m,Nm\ZMhsﬁ\

S FI S S
j=2

m=0
24N |- N _
<> B Lo+ Y b6 (e 6)
m=0 J1s s J2m=2

Let J be the set of all indices (j1,- -, jom) € {2, -+, N}>™ such that there is at least one index
jx different from all others. Since for j € {2,---, N} and x € R4,
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by the independence of the components of &, we have for any (j1,- - ,jam) € J,

E[0(61,6) 060, €an) | = E[E[0(2,65,) - 92,42, )] lomes | = 0.

Hence,

EeMVI(ene)( Z O iz + 1),

where §J¢ stands for the cardinality of the complement set Je.
Suppose 2m < N. It is easy to see that (ji,--- ,j2,m) € J¢ if and only if each ji appears at least
twice and there are at most m-distinct ji. Thus one has

JC = U'yT:lJTH
where J,, is the set of (41, -, jam) such that each j; appears at least twice and exactly n-integers
appear. Clearly, by Stirling’s formula n™ < e"n! < e2"n", we have
— N -—1)" (N —1)"
ﬁJn < ( Nn 1 >n2m — u,n?m < un%n < (Ne)nnm

n! = nn

Thus, for 2m < N,

m

1Je < Z(Ne)”nm < 2(Ne)™m™ < 2(Ne)™e™ml.
n=1
Moreover, for 2m > N, we obviously have

1J¢ < N2™ < N™(2m)™ < N™(2e)™

1
So, for A < oA
ANI@En)EP < 3 (4xym g2 (L ") S o
BNIEIEO" < 52 NMI1E (g + (2e07) <2 3027 =
The proof is complete. O

Now we can use the entropy formula in Lemma 4.5 to show the following result.

Theorem 5.6. Suppose that (H?) and (H®) hold and ¢ is bounded measurable. Let ul be the
law of XN in R™ and p; be the law of X; in R%. Then there is a constant C = C(kg, k1) > 0
independent of ¢ such that for any t > 0,

( |M®N) < eCH¢H2 t( (M(J)V|M§)N) + C||¢||c2>ot)

Proof. Let ny, = 3 vazl dwi and B, o be defined by (5.1) and (5.2), respectively. By Lemma
4.5 and (1.15), we have

1 t
H ™) < H(po 5™ + 5/0 B

t
K N
<H(ﬂévlﬂ?N)+§o/ Ef:
H K !
< H( ™) + 12 / B (90 ® 112) (1) — (60 ® 1, ) () P

U(Saws)il(B(Sawm/LS) - B(Sawsanws)”zds

2ds

B(Sa wsnus) - B(S, wsanws)

RoR1 N7
= H (Y SN + T/ NE (64 ® 1, ) (w))Pds.
0
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Now by the variational representation (4.6) and Lemma 5.5 with A = we further have

1
16e?[[¢]1%, 2

t
’H(uivlu?N)<H(uévlu?N)+H0m/0 (MY ™) + B NG @m0 g

2A
t
< W) + Cllol [ [ 1nE™) +moas,

which yields the desired estimate by Gronwall’s inequality. O
Remark 5.7. By the Pinsker inequalities (4.4) and (4.7), we have for any k < N,

eClollZ tk
N,k N,k
g™ = " v < /2 (1) < S (M 1) + Cll1et).

Note that when F(t,z,r) = r is linear and "H(ut ’ ) < COkQ/NQ, by a delicate analysis of the
BBGKY hierarchy, the following sharp estimate is obtained by Lacker (see Theorem 2.10 of [27]):

1% = 5 lvar < A/2H (N |u2*F) < CKJN.

6. FROM WEAK CONVERGENCE TO STRONG CONVERGENCE: PROOF OF THEOREM 1.1

In this section we show how to use the previous weak convergence result to derive the strong
convergence of the particle system. The following lemma is the key point.

Lemma 6.1. Let ¢ : Ry x R4 x R? — R be a measurable function. Set

d_)t(xvy) = ¢t(z7y) - (¢t ® ,LLXt)(I)
(i) If ¢ is bounded measurable, then there is a constant C = C(kg, k1) > 0 such that for all t > 0,

E|(de @ ey ) (X2 < Ol M (1 |1§™) +1) /N. (6.1)
(i) If ¢ satisfies (1.16), then for any T > 0,
T
lim E (/ (¢ ® nX{v)(XtN’l)|2dt> =0. (6.2)
0

N—oc0

Proof. (i) By the variational representation (4.6), for any & > 0, we have
ENE|(Ge ® mxy ) (X;1)[? = eNEM Gy (w] o, ) > < (¥ |uf™) + log BH e NIt mo )1,

which in turn implies (6.1) by Lemma 5.5 with ¢ = and Theorem 5.6.

1
16e7[[4[12,
(ii) By definition we have

T
E(/ (6 ® 11y ) (X7 dt) Ne] ZE(/ (X0, XN X”)dt) (6.3)

7,k=1
where ~ ~
Li(z,y,2) := ¢e(@,y)Pe(, 2).
Let ¢5(x,y) := (¢¢ * I.)(x,y) be the mollifying approximation of ¢; and
¢t (Qj,y) = d)t (‘T7y) - (¢t ® /“LXt)('r)’

and

F?((ﬂ, Y, Z) = (bf(xa y)q@f(x, Z)
Noting that

(Ft - Fi)('%yvz) = (Qgt - éi)(x7y)§£§('xaz) + dgt(xvy)(a)t - &i)(x’Z%
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by Holder’s inequality, we have

T
E (/ Ty — rg)(x{vll,xtfvﬂ,xjv”“)dtﬂ
0
T 1/2 T 1/2
<(zf @ -arernaa) (= a0 )
0 0

. 1/2 - 1/2
+ (E/ 6 (X1, X17) dt) (E/ (61 —qbf)Q(Xt]V’l,thv’k)dt) :
0 0
Using the Krylov estimate (5.16) and as in showing (5.20), we get

. N .
611_% skfp sjt’llg I;%(e) = 0. (6.4)

On the other hand, for fixed ¢, by (5.5) we have

T
lim sup E / rs(x 0N XM xR dt
N=00 jtk£1 0

T
= lim E(/ Ff(XtN’l,XtN’Q,XtN’?’)dt>
0

I‘]]Yk}(g) =

N —oc0

T
=E (/ rs (Xﬁ,Xf,Xf)dt) =0, (6.5)
0
where the last step is due to the fact that
EI'; (X}, X7, X7) = E [E¢; (v, XP)E¢; (2, X7); = X;] = 0.
Thus by (6.4) and (6.5),
T
lim sup E / ry(xh x5, xNMdt | =o. (6.6)
N—=00 jotkst1 0
Moreover, by the Krylov estimate (5.16) we also have

T
supE (/ Ft(XtN’l,XtN’J,XtN’k)dt>
7,k 0

Nl

1
2

T
<supE (/ ¢‘>t(X£V’%X£V’J)2dt>
0

T
E ( / b (Xiv’l,Xi“’“)th>
0

jik
T 2
=supE (/ o (X1, X M) dt) < 0. (6.7)
J 0
By (6.3), (6.6) and (6.7), we obtain (6.2). O

Now we can give the

Proof of Theorem 1.1. Let X; be the unique strong solution of dDDSDE (1.2) starting from X
(see Theorem 4.8). Define

b(ta Z‘) = b(t7x7l“’(‘Xt) = F(tv T, (¢t ® IJ’Xt)(‘r))'
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By (HY), it is easy to see that
b= [bllg gpy < 00
Consider the following backward PDE
du+ tr(oo* - V?u)+b-Va—du+b=0, u(T)=0.
By reversing the time variable and Theorem 2.9, there is a unique solution u satisfying the following
estimate: for any 8 € (0,9), where 9 := 1— |%| —%, there is a constant Cy = Co(T, ko,d, p,q,8) > 1
such that for all A > Coh?/?,
MOl creny + IV2ullgy gp) < Cop- (6.8)
In particular, one can choose A = (2Ch)%/? so that
IVulos < 4. (6.9)
Now if we define
O(t,x) :=z+u(t,z),
then for each ¢,
x> ®(t,z) is a C'-diffeomorphism on R?,
and
IVl + [V <2, (6.10)
Define
Y =0t X,), VOli=a, XN,
By It6’s formula (see the proof in Lemma 3.3), we have
dY; = \u(t, Xy)dt + &(t, X¢)dW}
and
Ayt = xu(t, XN dt + (B - V) (6, XN dt + 6t X AW,
where ¢ := ¢*V® and
B(t,z) := b(t, z,mxx~) — b(t, . px,).
In particular, we have

t
YV — v, = 00, X)) — 9(0, Xo) + A/ {u(stév’l) - U(&Xs)]ds
0

t

+/Ot (B-Vu)(s,X;V’l)ds—&-/o [6(57X§V’1)—6(37X8)}dW51.

By It6’s formula and (6.9), (6.10), we further have

¢

YR AP = Xof 4 [V S V(XN < X 4B (s, X s
0

. (6.11)

+ / 15(s, XM — 5(s, X,)|2ds + M,
0
where M, is a continuous local martingale. Note that by (2.10),
55, X21) — 55, X,) < 2o ()XY — X[

where
Ena(s) == MIVG (s, )P (X1 + MIVG (s, )2 (Xs) + 162 + A+ 1.
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Thus, by (6.11) and (6.10) we have

t
X - X < C<|Xév’1 - Xo/? +/ Ena(s)| X! — Xo|ds
0
) (6.12)
+/ |B(s, XN1)|2ds | + M,
0

where C' > 0 is an absolute constant. By the chain rule, we have
MIVG|? <AM|Va]? + ||o]|ZM|V2ul?.
By (2.11) and (1.14), we have
IMIVo Pl zporz) S MV a0rz o/, = IV 0 g0, < o0
and by (6.8),
IMIV20P gz gy S NIV lgs ey = 192002, o) < (Cob)

Since (%, %20), (2, 2) € 4, by (5.15) and (3.21) we have for any v > 0,

T
A, :=supEexp {'y/ ENWA(s)ds} < 00.
N 0

Thus by (6.12) and the stochastic Gronwall inequality (cf. [39] or [46, Lemma 3.7]), we get for any
v €(0,1),

T vy
E| sup X' =X, 27| <C A0 [ B X! —X0|2+E/ |B(s, XM [Pds | . (6.13)
te[0,T) -1 0
Noting that by (1.15),
|B(t,2)| < w1l (dr ® 1) () — (¢ ® px, ) (@)| = K |(¢r ® nxv ) ()],

where

¢t($,y) = (bt(l’,y) - (¢t ® /J’Xt)(x)7
we further have for any v € (0,1),
T

IE( sup | X! —Xt|27> < CyAzn <E|Xév’1 —X0|2+I€%]E/

¥
[(¢s ® nxgv)(Xiv’l)I2d8> -
te[0,T) 0

Now, (i) follows by (6.2) and the above estimate.
(ii) When h and ¢ are bounded, by (1.15) one has
[b(t, )| < llhfloo + Frll@lloo-
Thus for any § > 2, one can choose ¢,p in (6.8) close to oo so that ¥ = % =1-
b i= Wl iy < O+ 16]0):
By (5.15), (3.22) and for A = (2Cob)?/?, we have

— |1} and

2
q P

T
Ay =supEexp {7/ éN,A(S)dS} < Ce" < CeClPIL”,
N 0

Estimate (1.19) now follows by the above estimates and (6.1). O
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7. MODERATE INTERACTING PARTICLE SYSTEM: PROOF OF THEOREM 1.3
We counsider the following McKean-Vlasov type approximation for density-dependent SDE (1.4):
dX; = F(t, X7, (6= * p))(X7))dt + o (t, X7)dW,, X5 = Xo,

where ¢.(z) = e 9¢(z/¢), and ¢ is a bounded probability density function with support in the
unit ball, F'is bounded measurable and pf is the density of X;.
We first show the following lemma.

Lemma 7.1. For any T >0, 5 € (0,79) and v € (0,1), there is a constant C = C(T,3,~,0) > 0
such that for all e € (0,1),

E( sup |X{—X:|*" | <Ce*.
t€[0,T)

Proof. Let X; be the unique strong solution of DDSDE (1.4) starting from Xg. Define
b(t,x) = F(t,x, pi(x)).
By assumption we have
[llLee < [1F|Lss-
Consider the following backward PDE
ou+ tr(oo™ - V2u)+b-Va—du+b=0, u(T)=0.
As in the proof of Theorem 1.1 we construct a C''-diffeomorphism
®(t,x) ==z +u(t,x),
and define
Ve = Bt XF), Y= B(t X)),
By the generalized It6 formula, we have
dY; = Au(t, X¢)dt + &(¢, X¢)dW}
and
dYF = Au(t, X{)dt + (B. - Vu) (¢, X7 )dt + 6 (t, X7 )dW,,
where ¢ = 0*V® and
Be(t, ) = F(t,x,(¢e * pp)(x)) — F(t, 2, pe(2)).

In particular, we have
t t
YE Y, = )\/ [u(s,Xg) - u(s,XS)}ds +/ (B. - Vu) (s, X%)ds
0 0
t
+/ [5(5,)(;) - &(S,XS)} AW,
0
By Itd’s formula and (6.9), we further have

t
=Vl [V = VNS = X 1B s X))
0
t (7.1)
+/ |&(87X§) _6(57X8)|2d8+Mt’
0
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where M; is a continuous local martingale. Completely the same way as in proving (6.13), we have
T Y

EXN! - X2 < E/ 1B (s, X2)|?ds | . (7.2)

0

On the other hand, for any p > d, by Lemma 4.7 we have
t
_1(14d
107 = pellLe Sc /0 (t— )72 Bo(s) g, ds.

By the Lipschitz assumption on F in r, we have

IB=(s)llr < [|Be($)llLe S Mo o5 — psllLe < llpg = psliLee + [[¢e * ps — pslLee-
For any S € (0,70), noting that by (3.17),

Ips(- +9) = pslle < Clipolloolyl®s ™72,
we have
o059 = pulle < [ el ) = plls - 60y
S [ o)l £ 5, (73)
Hence,

t
_1(14d _8
lpf = Pl <c / (t—s)" 20 (|[pf = psllie + 5~ 2”)ds.
0
By Gronwall’s inequality of Volterra’s type, we have
o5 — pelle < Ct2~ % 7P < Ot 268, (7.4)
Note that by (1.15), (7.3) and (7.4),

BIB. (s, X5) P < 6t [ 160 4 3(0) = pula) P )
R L
< il # pf — pallEe < Cs77
Substituting this into (7.2), we obtain the desired estimate. O
Now we can give the

Proof of Theorem 1.3. This is a direct combination of Lemma 7.1 and (ii) of Theorem 1.1. O
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