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Abstract

Consider stochastic partial differential equations (SPDEs) with fully
local monotone coefficients in a Gelfand triple V ⊆ H ⊆ V ∗:{

dX(t) = A(t,X(t))dt+B(t,X(t))dW (t), t ∈ (0, T ],

X(0) = x ∈ H,

where

A : [0, T ]× V → V ∗, B : [0, T ]× V → L2(U,H)

are measurable maps, L2(U,H) is the space of Hilbert-Schmidt oper-
ators from U to H and W is a U -cylindrical Wiener process. Such
SPDEs include many interesting models in applied fields like fluid dy-
namics etc. In this paper, we establish the well-posedness of the above
SPDEs under fully local monotonicity condition solving a longstanding
open problem. The conditions on the diffusion coefficient B(t, ·) are
allowed to depend on both theH-norm and V -norm. In the case of clas-
sical SPDEs, this means that B(·, ·) could also depend on the gradient
of the solution. The well-posedness is obtained through a combination
of pseudo-monotonicity techniques and compactness arguments.

Keywords and Phrases: Stochastic partial differential equations, non-
linear evolution equations, locally monotone, pseudo-monotone, variational
solutions.
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1 Introduction

Let H be a separable Hilbert space with inner product (·, ·) and norm
|| · ||H . Let V be a reflexive Banach space that is continuously and densely
embedded into H. The norms of V and its dual space V ∗ are denoted by
|| · ||V and || · ||V ∗ respectively. If we identify the Hilbert space H with its
dual space H∗ by the Riesz representation, then we obtain a Gelfand triple

V ⊆ H ⊆ V ∗.

We denote by ⟨f, v⟩ the dual pairing between f ∈ V ∗ and v ∈ V . It is easy
to see that

(u, v) = ⟨u, v⟩, ∀u ∈ H, ∀ v ∈ V. (1.1)

Let W be a cylindrical Wiener process on another separable Hilbert space
U defined on some probability space (Ω,F ,P) with normal filtration {Ft}.

Let T > 0 be fixed in this paper. Consider the following stochastic
partial differential equations (SPDEs),{

dX(t) = A(t,X(t))dt+B(t,X(t))dW (t), t ∈ (0, T ],

X(0) = x ∈ H, (1.2)

where

A : [0, T ]× V → V ∗, B : [0, T ]× V → L2(U,H) (1.3)

are measurable maps. Here L2(U,H) is the space of Hilbert-Schmidt oper-
ators from U to H with the norm denoted by ∥ · ∥L2 .

In this paper, we are concerned with the existence and uniqueness of
variational solutions for the above SPDEs in the Gelfand triple.

In variational approach, monotone operators play a key role. The theory
of monotone operators was initiated in the fundamental work of Minty [29],
and then studied systematically by Browder, and later developed by Leray
and Lions, Hartman and Stampacchia, We refer the reader to [21, 44] for a
detailed exposition.
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In the case of SPDEs, the monotone method was initially introduced
by Pardoux in his pioneering work [32, 33]. Celebrated work was then
carried out by Krylov and Rozovskii [19] and Gyongy [14]. We refer to
[34, 35, 37, 38, 45] and references therein for the early applications of the
variational approach to SPDEs. Now, there exists an enormous literature
on the well-posedness of SPDEs within the variational framework, some of
which we like to mention here. Please see [25, 23, 11, 30, 12] for SPDEs
with generalized coercivity conditions or Lyapunov conditions, [7, 31, 18]
for SPDEs driven by Levy noise, [13] for martingale solutions of SPDEs,
and [3] for stochastic porous media equations as well as other references.

In 2010, the classical framework of the variational approach was sub-
stantially extended by Liu and Röckner [24] for SPDEs with coefficients
satisfying local monotonicity conditions, more precisely, for u, v ∈ V ,

⟨A(t, u)−A(t, v), u− v⟩ ≤ [C + ρ(u) + η(v)]∥u− v∥2H , (1.4)

where ρ(u) or η(v) are functions on the smaller space V , which are bounded
on V -balls. However, in [24] it was required that only one of ρ(u) and η(v)
is non-zero, namely, either ρ(u) ≡ 0 or η(v) ≡ 0. Nevertheless, many in-
teresting examples such as stochastic 2D Navier–Stokes equations can be
included into this framework. Later in 2011, Liu [22] (see also [26]) studied
SPDEs satisfying a more general type of locally monotonicity conditions,
i.e. both ρ(u) and η(v) in (1.4) are not zero. Liu used pseudo-monotone
operators within the variational approach, but only SPDEs with additive
noise were solved. Since then, the well-posedness of SPDEs driven by mul-
tiplicative noise with fully local monotone coefficients has been left as an
open problem, which was mentioned a number of times in the literature (see
e.g. [24, 22, 26, 25, 7, 23]).

The purpose of this paper is to establish the well-posedness of SPDEs
driven by multiplicative noise with fully local monotone coefficients, solving
this problem in the field, which has been open for some time. The notion
of pseudo-monotone operators plays an important role. Pseudo-monotone
operators (see Definition 2.1 in Section 2) were initially introduced by Brézis
in [4], and further developed by many authors, see [21, 44] and references
therein. Pseudo-monotone operators constitute a more general class than
monotone operators.

Now we describe our approach in detail. We distinguish two cases de-
pending on whether the diffusion coefficient B is continuous on the Hilbert
space H or B(t, u) is allowed to depend on the gradient ∇u of the solu-
tion function u. In Part I, we treat the case where B is continuous on
H. We will combine compactness arguments with techniques from the the-
ory of pseudo-monotone operators. Firstly, we establish some improved
uniform moment estimates for the Galerkin approximating solutions {Xn}
(see (2.16) below). Secondly, we prove the tightness of the laws of {Xn}
in the space C([0, T ], V ∗) ∩ Lα([0, T ], H). Thirdly, we apply the Prohorov
theorem and the Skorohod representation theorem to obtain that on some
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new probability space, Xn converges almost surely to some element X in
C([0, T ], V ∗) ∩ Lα([0, T ], H) (along a subsequence). Finally, we show that
B(·, Xn(·)) converges strongly to B(·, X(·)) and that A(·, Xn(·)) converges
weakly to A(·, X(·)). To this end, it is essential to show that Y (·) →
A(·, Y (·)) is pseudo-monotone in certain Lα-spaces. Hence X will be a
probabilistically weak solution. The existence of probabilistically strong
solutions follows from the pathwise uniqueness and the Yamada-Watanabe
theorem. In part II, we deal with the case where B is allowed to depend
on the gradient of the solution. We shall modify the steps from Part I. We
establish the tightness of the laws of {Xn} in the space Lα([0, T ], H). To
identify every limit point X as a solution of the SPDE (1.2), we use in an
essential way the fact that the Xn converges almost surely to some element
X in the space Lα([0, T ], H) on some new probability space. Monotonicity
techniques also play an important role.

The results of this paper can be applied to establish the existence and
uniqueness of solutions for many interesting stochastic nonlinear evolution
equations. Examples are provided in Section 4. It should be pointed out
that all the examples considered in [34, 26, 24, 22] can be covered by
our framework, including the 2D Navier-Stokes equations, porous media
equations, fast-diffusion equations, p-Laplacian equations, Burgers equa-
tions, Allen-Cahn equations, 3D Leray-α model, 2D Boussinesq system,
2D magneto-hydrodynamic equations, 2D Boussinesq model for the Bénard
convection, 2D magnetic Bénard equations, some shell models of turbu-
lence (GOY, Sabra, dyadic), power law fluids, the Ladyzhenskaya model,
and the Kuramoto-Sivashinsky equations. Moreover, our main results are
also applicable to the 3D tamed Navier-Stokes equations, some quasilin-
ear PDEs, Cahn-Hilliard equations, liquid crystal models and Allen-Cahn-
Navier-Stokes systems, which are not covered by the framework in [24, 26,
34].

2 Part I

2.1 Hypotheses and Main Results

Let us first recall the definition of pseudo-monotone operators.

Definition 2.1. An operator A from V to V ∗ is said to be pseudo-monotone,
if the following property holds: if un converges weakly to u in V and

lim inf
n→∞

⟨A(un), un − u⟩ ≥ 0, (2.1)

then

lim sup
n→∞

⟨A(un), un − v⟩ ≤ ⟨A(u), u− v⟩, ∀ v ∈ V. (2.2)

Remark 2.2. If A is a bounded operator from V to V ∗, i.e. A maps every
bounded set of V to a bounded set of V ∗, then the pseudo-monotonicity of
A is equivalent to the following property: if un converges weakly to u in V
and

lim inf
n→∞

⟨A(un), un − u⟩ ≥ 0, (2.3)
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then A(un) converges to A(u) in the weak-* topology of V ∗ and

lim
n→∞

⟨A(un), un⟩ = ⟨A(u), u⟩. (2.4)

We refer the reader to Proposition 27.7 in [44] or Remark 5.2.12 in [26].

We introduce the following conditions on the coefficients A and B. Let
f ∈ L1([0, T ],R+) and α ∈ (1,∞).

(H1) Hemicontinuity: for a.e. t ∈ [0, T ], the map R ∋ λ 7−→ ⟨A(t, u +
λv), x⟩ ∈ R is continuous for any u, v, x ∈ V .

(H2) Local monotonicity: there exist nonnegative constants γ and C such
that for a.e. t ∈ [0, T ] and any u, v, x ∈ V ,

2⟨A(t, u)−A(t, v), u− v⟩+ ∥B(t, u)−B(t, v)∥2L2

≤[f(t) + ρ(u) + η(v)]∥u− v∥2H ,
|ρ(u)|+ |η(u)| ≤ C(1 + ∥u∥αV )(1 + ∥u∥γH), (2.5)

where ρ and η are two measurable functions from V to R.

(H2)′ General local monotonicity: for any R > 0, there exists a function
K·(R) ∈ L1([0, T ],R+) such that for a.e. t ∈ [0, T ] and any u, v, x ∈ V
with ∥u∥V ∨ ∥u∥V ≤ R,

⟨A(t, u)−A(t, v), u− v⟩ ≤ Kt(R)∥u− v∥2H . (2.6)

Remark 2.3. Obviously, (H2)′ is weaker than (H2). It turns out that the
assumption (H2)′ is sufficient for the existence of solutions, while (H2) is
used for the pathwise uniqueness of solutions.

(H3) Coercivity: there exists a constant c > 0 such that for a.e. t ∈ [0, T ]
and any u ∈ V ,

2⟨A(t, u), u⟩+ ∥B(t, u)∥2L2
≤ f(t)(1 + ∥u∥2H)− c∥u∥αV . (2.7)

(H4) Growth: there exist nonnegative constants β and C such that for a.e.
t ∈ [0, T ] and any u ∈ V ,

∥A(t, u)∥
α

α−1

V ∗ ≤ (f(t) + C∥u∥αV ) (1 + ∥u∥βH). (2.8)

(H5) For a.e. t ∈ [0, T ] and any sequence {un}∞n=1 and u in V satisfying
∥un − u∥H → 0,

∥B(t, un)−B(t, u)∥L2 → 0, (2.9)

Moreover, there exists g ∈ L1([0, T ],R+) such that for a.e. t ∈ [0, T ]
and any u ∈ V ,

∥B(t, u)∥2L2
≤ g(t)(1 + ∥u∥2H). (2.10)
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Remark 2.4. In many applications, the coefficient B is assumed to be
locally Lipschitz and of linear growth with respect to u in H-norm. So,
(H5) is satisfied. The case where ∥B(t, u)∥L2 also allows α-growth in the
V -norm will be studied in Section 3.

Let us recall the following definition of variational solutions to stochastic
partial differential euqation (1.2).

Definition 2.5. An H-valued continuous and adapted stochastic process
(X(t))t∈[0,T ] is called a solution to equation (1.2), if for its dt⊗P-equivalence
class X̂ we have

X̂ ∈ Lα([0, T ]× Ω, dt⊗ P, V ) ∩ L2([0, T ]× Ω, dt⊗ P, H)

with α in (H3) and P-a.s.

X(t) = X0 +

∫ t

0
A(s, X̄(s))ds+

∫ t

0
B(s, X̄(s))dW (s), ∀ t ∈ [0, T ],

where X̄ is any V -valued progressively measurable dt⊗ P-version of X̂.

Our main results in this section read as follows.

Theorem 2.6. Suppose that the embedding V ⊆ H is compact and (H1)
(H2)′ (H3) (H4) (H5) hold. Then for any initial value x ∈ H, there exists a
probabilistically weak solution to equation (1.2). Furthermore, for any p ≥ 2,
the following moment estimate holds:

E
{

sup
t∈[0,T ]

∥X(t)∥pH
}
+ E

{(∫ T

0
∥X(s)∥αV ds

) p
2

}
<∞. (2.11)

Moreover, if (H2) is satisfied, then pathwise uniqueness holds for solutions
of equation (1.2) and hence there exists a unique probabilistically strong
solution to equation (1.2).

From the proof of Theorem 2.6, we obtain the following corollary.

Corollary 2.7. Assume the embedding V ⊆ H is compact, the operator
A(t, ·) is pseudo-monotone for a.e. t ∈ [0, T ], and (H1) (H3) (H4) (H5)
hold. Then for any initial value x ∈ H, there exists a probabilistically weak
solution to equation (1.2), and estimate (2.11) holds.

Theorem 2.8. Suppose that the embedding V ⊆ H is compact and (H1)
(H2) (H3) (H4) (H5) hold. Let {xn}∞n=1 and x be a sequence with ∥xn −
x∥H → 0. Let X(t, x) be the unique solution of (1.2) with the initial value
x. Then for any p > 0,

lim
n→∞

E
[
sup
t≤T

∥X(t, xn)−X(t, x)∥pH
]
= 0. (2.12)

Remark 2.9. Compared with the local monotonicity condition used in [24],
the major difference is that in condition (H2) both ρ and η can be nonzero.
In fact, in [24] it is required that ρ(u) + η(v) either only depend on u or
only depend on v when the equation is driven by multiplicative noise. This
requirement was crucially used in [24].
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2.2 Proofs of the Main Results

In this section, we will prove Theorem 2.6 and Theorem 2.8. Throughout
this part, we will assume that the embedding V ⊆ H is compact and (H1)
(H2)′ (H3) (H4) (H5) hold.

We will construct approximating solutions using the Galerkin method
and then establish the tightness of the laws of the approximating solutions
in an appropriate space in order to obtain the existence of probabilistically
weak solutions.

Let {ei}∞i=1 ⊂ V be an orthonormal basis of H. Let Hn denote the n-
dimensional subspace of H spanned by {e1, . . . , en}. Let Pn : V ∗ → Hn be
defined by

Pnu :=

n∑
i=1

⟨u, ei⟩ei. (2.13)

Clearly, Pn|H is just the orthogonal projection of H onto Hn. Let {hi}∞i=1

be an orthonormal basis of Hilbert space U . Set

Wn(t) = QnW (t) :=

n∑
i=1

⟨W (t), hi⟩hi, (2.14)

where Qn is the orthogonal projection onto span{h1, · · · , hn} in U .
For any integer n ≥ 1, we consider the following stochastic differential

equation in the finite-dimensional space Hn,

Yn(t) = Pnx+

∫ t

0
PnA(s, Yn(s))ds+

∫ t

0
PnB(s, Yn(s))QndW (s), (2.15)

It’s well-known that there exists a unique probabilistically strong solution
to the above equation, see [34, 26]. We have the following uniform estimates
for {Yn}.

Lemma 2.10. For any p ≥ 2, there exists a constant Cp such that

sup
n∈N

{
E
[
sup
t≤T

∥Yn(t)∥pH
]
+ E

(∫ T

0
∥Yn(t)∥αV dt

) p
2

}
< Cp(1 + ∥x∥pH). (2.16)

Remark 2.11. The above improved estimates (compared to Lemma 2.2
in [24] and Lemma 4.2.9 in [34]) are crucial in the analysis below. In [12],
the authors obtained a similar estimate as above under a different set of
conditions.

Proof. It suffices to prove this lemma for large p. By Ito’s formula,

∥Yn(t)∥2H =∥Pnx∥2H +

∫ t

0

[
2⟨A(s, Yn(s)), Yn(s)⟩+ ∥PnB(s, Yn(s))Qn∥2L2

]
ds

+ 2

∫ t

0

(
Yn(s), B(s, Yn(s))QndW (s)

)
. (2.17)
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Apply Ito’s formula to the real-valued process ∥Yn(t)∥2H to get

∥Yn(t)∥pH =∥Pnx∥pH +
p

2

∫ t

0
∥Yn(s)∥p−2

H

[
2⟨A(s, Yn(s)), Yn(s)⟩+ ∥PnB(s, Yn(s))Qn∥2L2

]
ds

+
p(p− 2)

2

∫ t

0
∥Yn(s)∥p−4

H ∥(B(s, Yn(s))Qn)
∗Yn(s)∥2Uds

+ p

∫ t

0
∥Yn(s)∥p−2

H

(
Yn(s), B(s, Yn(s))QndW (s)

)
. (2.18)

In view of (H3) and (H5), it follows from (2.18) that there exist some positive
constants c, C such that

∥Yn(t)∥pH +
pc

2

∫ t

0
∥Yn(s)∥αV ∥Yn(s)∥

p−2
H ds

≤ ∥Pnx∥pH + C

∫ t

0
[f(s) + g(s)](1 + ∥Yn(s)∥2H)∥Yn(s)∥p−2

H ds

+ p

∫ t

0
∥Yn(s)∥p−2

H

(
Yn(s), B(s, Yn(s))QndW (s)

)
. (2.19)

Set

τMn,H := inf{t ≥ 0 : ∥Yn(t)∥H > M} ∧ T. (2.20)

Then τMn,H → T , P-a.s. as M → ∞, for every n. Taking the supremum

over t ≤ r ∧ τMn,H and then taking expectations on both sides of the above
inequality yield

E
[

sup
t≤r∧τMn,H

∥Yn(t)∥pH
]
+
pc

2
E
∫ r∧τMn,H

0
∥Yn(s)∥αV ∥Yn(s)∥

p−2
H ds

≤∥x∥pH + C

∫ T

0
[f(s) + g(s)]ds+ CE

∫ r∧τMn,H

0
[f(s) + g(s)]∥Yn(s)∥pHds

+ pE
{

sup
t≤r∧τMn,H

∣∣∣∣ ∫ t

0
∥Yn(s)∥p−2

H

(
Yn(s), B(s, Yn(s))QndW (s)

)∣∣∣∣}. (2.21)

By the BDG inequality and (H5), we have, for any ε > 0,

pE
{

sup
t≤r∧τMn,H

∣∣∣∣ ∫ t

0
∥Yn(s)∥p−2

H

(
Yn(s), B(s, Yn(s))QndW (s)

)∣∣∣∣}

≤CE
(∫ r∧τMn,H

0
∥Yn(s)∥2p−2

H ∥B(s, Yn(s))∥2L2
ds

) 1
2

≤CE
(

sup
s≤r∧τMn,H

∥Yn(s)∥pH ·
∫ r∧τMn,H

0
∥Yn(s)∥p−2

H ∥B(s, Yn(s))∥2L2
ds

) 1
2

≤εE
[

sup
s≤r∧τMn,H

∥Yn(s)∥pH
]
+ CεE

∫ r∧τMn,H

0
∥Yn(s)∥p−2

H ∥B(s, Yn(s))∥2L2
ds
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≤εE
[

sup
s≤r∧τMn,H

∥Yn(s)∥pH
]
+ Cε

∫ T

0
g(s)ds+ CεE

∫ r∧τMn,H

0
g(s)∥Yn(s)∥pHds.

(2.22)

Combining (2.21) and (2.22) together, appropriately choosing the parameter
ε and applying Gronwall’s inequality give

E
[

sup
t≤r∧τMn,H

∥Yn(t)∥pH
]
+ CE

∫ r∧τMn,H

0
∥Yn(s)∥αV ∥Yn(s)∥

p−2
H ds

≤C
(
∥x∥pH +

∫ T

0
[f(s) + g(s)]ds

)
exp

(
C

∫ T

0
[f(s) + g(s)]ds

)
. (2.23)

Letting M → ∞ and applying Fatou’s lemma, we obtain

sup
n∈N

{
E
[
sup
t≤T

∥Yn(t)∥pH
]
+ E

∫ T

0
∥Yn(s)∥αV ∥Yn(s)∥

p−2
H ds

}
<∞. (2.24)

Using (H3), it follows from (2.17) that

∥Yn(t)∥2H + c

∫ t

0
∥Yn(s)∥αV ds

≤∥Pnx∥2H +

∫ t

0
[f(s) + g(s)](1 + ∥Yn(s)∥2H)ds

+ 2

∫ t

0

(
Yn(s), B(s, Yn(s))QndW (s)

)
.

Hence

E
(∫ t

0
∥Yn(s)∥αV ds

) p
2

≤C∥x∥pH + CE
(∫ t

0
[f(s) + g(s)](1 + ∥Yn(s)∥2H)ds

) p
2

+ CE
∣∣∣∣ ∫ t

0

(
Yn(s), B(s, Yn(s))QndW (s)

)∣∣∣∣ p2
≤C∥x∥pH + C

(
1 + E

[
sup
s≤T

∥Yn(s)∥pH
])

+ CE
∣∣∣∣ ∫ t

0

(
Yn(s), B(s, Yn(s))QndW (s)

)∣∣∣∣ p2 .
(2.25)

Again by the BDG inequality and (H5), we have

CE
∣∣∣∣ ∫ t

0

(
Yn(s), B(s, Yn(s))QndW (s)

)∣∣∣∣ p2
≤CE

(∫ t

0
∥Yn(s)∥2H∥B(s, Yn(s))∥2L2

ds

) p
4

≤CE
(∫ T

0
g(s)ds ·

[
1 + sup

s≤T
∥Yn(s)∥4H

]) p
4
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≤C
(
1 + E

[
sup
s≤T

∥Yn(s)∥pH
])
. (2.26)

Combining (2.24)-(2.26) together yields

sup
n∈N

E
(∫ T

0
∥Yn(s)∥αV ds

) p
2

<∞. (2.27)

The proof is complete. ■

Define stopping times as follows,

τMn :=T ∧ inf
{
t ≥ 0 : ∥Yn(t)∥2H > M

}
∧ inf

{
t ≥ 0 :

∫ t

0
∥Yn(s)∥αV ds > M

}
. (2.28)

with the convention inf ∅ = ∞. By the Chebyshev inequality, Lemma 2.10
implies that

lim
M→∞

sup
n∈N

P(τMn < T ) = 0. (2.29)

The next result gives the tightness of the laws of {Yn}.

Lemma 2.12. {Yn}∞n=1 is tight in the space C([0, T ], V ∗) ∩ Lα([0, T ], H).

Proof. It suffices to prove that {Yn}∞n=1 is tight in C([0, T ], V ∗) and in
L2([0, T ], H) separately.

We first show that {Yn}∞n=1 is tight in C([0, T ], V
∗). SinceH is compactly

embedded into V ∗, and

lim
M→∞

sup
n∈N

P
(
sup
t≤T

∥Yn(t)∥H >
√
M
)
≤ lim

M→∞
sup
n∈N

P(τMn < T ) = 0, (2.30)

by Theorem 3.1 in [17], it is sufficient to show that for every e ∈ PmH,
m ∈ N, {⟨Yn, e⟩}∞n=1 is tight in the space C([0, T ],R). By (2.30) and the
Aldou’s tightness criterion (see Theorem 1 in [1]), it suffices to show that
for any stopping time 0 ≤ ζn ≤ T and for any ε > 0,

lim
δ→0

sup
n∈N

P
(
|⟨Yn(ζn + δ)− Yn(ζn), e⟩| > ε

)
= 0, (2.31)

where ζn+δ := T ∧(ζn+δ)∨0. Set YM
n (t) := Yn(t∧τMn ). By the Chebyshev

inequality, we have

P
(
|⟨Yn(ζn + δ)− Yn(ζn), e⟩| > ε

)
≤P
(
|⟨Yn(ζn + δ)− Yn(ζn), e⟩| > ε, τMn ≥ T

)
+ P(τMn < T )

≤ 1

εα
E|⟨YM

n (ζn + δ)− YM
n (ζn), e⟩|α + P(τMn < T ). (2.32)

By the equation (2.15) and the BDG inequality, it follows that

E|⟨YM
n (ζn + δ)− YM

n (ζn), e⟩|α

10



≤2α−1 E

(∫ (ζn+δ)∧τMn

ζn∧τMn
|⟨PnA(s, Yn(s)), e⟩|ds

)α

+ 2α−1 E

(∫ (ζn+δ)∧τMn

ζn∧τMn
∥e∥2H∥PnB(s, Yn(s))Qn∥2L2

ds

)α
2

= : In + IIn. (2.33)

Since e ∈ PmH, we have

sup
n∈N

∥Pne∥V <∞.

By Hölder’s inequality, (H4) and the above inequality, it follows that

In ≤C E

{
|δ| ×

[ ∫ (ζn+δ)∧τMn

ζn∧τMn
|⟨A(s, Yn(s)), Pne⟩|

α
α−1ds

]α−1
}

≤C|δ|E

[∫ T∧τMn

0
∥Pne∥

α
α−1

V

(
f(s) + C∥Yn(s)∥αV

)(
1 + ∥Yn(s)∥βH

)
ds

]α−1

≤CM |δ|. (2.34)

Similarly, by (H5) we have

IIn ≤C E

(∫ (ζn+δ)∧τMn

ζn∧τMn
∥e∥2H g(s)(1 + ∥Yn(s)∥2H)ds

)α
2

≤CM E

(∫ (ζn+δ)∧τMn

ζn∧τMn
g(s)ds

)α
2

.

Note that g ∈ L1([0, T ],R+). By the absolute continuity of the Lebesgue
integral, we get

lim
δ→0

sup
n∈N

IIn = 0. (2.35)

Combining (2.33)-(2.35) together yields

lim
δ→0

sup
n∈N

E|⟨YM
n (ζn + δ)− YM

n (ζn), e⟩|α = 0. (2.36)

In view of (2.29) and (2.36), letting δ → 0 and then M → ∞ in (2.32)
yield (2.31). Thus we complete the proof of the tightness of {Yn}∞n=1 in
C([0, T ], V ∗).

Next, we prove that {Yn}∞n=1 is tight in Lα([0, T ], H). Since

sup
n∈N

E
∫ T

0
∥Yn(t)∥αV dt <∞, (2.37)

by Lemma 5.2 in Appendix, it is sufficient to show that for any ϵ > 0,

lim
δ→0+

sup
n∈N

P
(∫ T−δ

0
∥Yn(t+ δ)− Yn(t)∥αHdt > ϵ

)
= 0. (2.38)
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Set YM
n (t) := Yn(t ∧ τMn ) as before and note that

P
(∫ T−δ

0
∥Yn(t+ δ)− Yn(t)∥pHdt > ϵ

)
≤P
(∫ T−δ

0
∥Yn(t+ δ)− Yn(t)∥αHdt > ϵ, τMn ≥ T

)
+ P

(
τMn < T

)
≤1

ϵ
E
∫ T−δ

0
∥YM

n (t+ δ)− YM
n (t)∥αHdt+ P

(
τMn < T

)
. (2.39)

If we have proved that for any fixed M > 0,

lim
δ→0+

sup
n∈N

E
∫ T−δ

0
∥YM

n (t+ δ)− YM
n (t)∥αHdt = 0, (2.40)

then, in light of (2.29), letting δ → 0 and then M → ∞ in (2.39) we have
(2.38), completing the proof of the tightness of {Yn}∞n=1 in Lα([0, T ], H).
Therefore, it remains to prove (2.40). To this end, we consider two cases
according to the value of α.

We first consider the case 1 < α ≤ 2. By Ito’s formula,

E∥YM
n (t+ δ)− YM

n (t)∥2H

=E
∫ (t+δ)∧τMn

t∧τMn
2⟨A(r, Yn(r)), Yn(r)− Yn(t ∧ τMn )⟩dr

+ E
∫ (t+δ)∧τMn

t∧τMn
∥PnB(r, Yn(r))Qn∥2L2

dr. (2.41)

It follows that

E
∫ T−δ

0
∥YM

n (t+ δ)− YM
n (t)∥2Hdt

=E
∫ T−δ

0
dt

∫ (t+δ)∧τMn

t∧τMn

[
2⟨A(r, Yn(r)), Yn(r)⟩+ ∥PnB(r, Yn(r))Qn∥2L2

]
dr

− 2E
∫ T−δ

0
dt

∫ (t+δ)∧τMn

t∧τMn
⟨A(r, Yn(r)), Yn(t ∧ τMn )⟩dr

= : I1 + I2. (2.42)

By the Fubini theorem and (H3) it follows that

I1 =E
∫ T∧τMn

0

[
2⟨A(r, Yn(r)), Yn(r)⟩+ ∥PnB(r, Yn(r))Qn∥2L2

]
dr

∫ r

0∨(r−δ)
1{τMn >t}dt

≤δ E
∫ T∧τMn

0
f(s)(1 + ∥Yn(s)∥2H)ds

≤CMδ. (2.43)

Applying the Fubini theorem and (H4) it follows that

|I2| =2

∣∣∣∣E∫ T∧τMn

0
dr

∫ r

0∨(r−δ)
1{τMn >t}⟨A(r, Yn(r)), Yn(t ∧ τMn )⟩dt

∣∣∣∣
12



≤2E
∫ T∧τMn

0
∥A(r, Yn(r))∥V ∗dr

∫ r

0∨(r−δ)
∥Yn(t ∧ τMn )∥V dt

≤2δ
α−1
α E

∫ T∧τMn

0
∥A(r, Yn(r))∥V ∗dr

(∫ T∧τMn

0
∥Yn(t)∥αV dt

) 1
α

≤CMδ
α−1
α . (2.44)

Combining (2.42)-(2.44) together yields

sup
n∈N

E
∫ T−δ

0
∥YM

n (t+ δ)− YM
n (t)∥2Hdt ≤ CM (δ + δ

α−1
α ). (2.45)

By Hölder’s inequality, we see that

lim
δ→0+

sup
n∈N

E
∫ T−δ

0
∥YM

n (t+ δ)− YM
n (t)∥αHds

≤C
(

lim
δ→0+

sup
n∈N

E
∫ T−δ

0
∥YM

n (t+ δ)− YM
n (t)∥2Hds

)α
2

= 0. (2.46)

Thus we have proved (2.40) for the case: α ≤ 2.
Now, we consider the remaining case: α > 2. Applying Ito’s formula to

the function ∥ · ∥αH and then taking expectations, we have

E∥YM
n (t+ δ)− YM

n (t)∥αH

=
α

2
E
∫ (t+δ)∧τMn

t∧τMn
∥Yn(r)− Yn(t ∧ τMn )∥α−2

H

[
2⟨A(r, Yn(r)),

Yn(r)− Yn(t ∧ τMn )⟩+ ∥PnB(r, Yn(r))Qn∥2L2

]
dr

+
α(α− 2)

2
E
∫ (t+δ)∧τMn

t∧τMn
∥Yn(r)− Yn(t ∧ τMn )∥α−4

H

× ∥
(
B(r, Yn(r))Qn

)∗(
Yn(r)− Yn(t ∧ τMn )

)
∥2Udr. (2.47)

By the Fubini theorem, it follows that

E
∫ T−δ

0
∥YM

n (t+ δ)− YM
n (t)∥αHdt

=
α

2
E
∫ T−δ

0
dt

∫ (t+δ)∧τMn

t∧τMn
∥Yn(r)− Yn(t ∧ τMn )∥α−2

H

×
[
2⟨A(r, Yn(r)), Yn(r)⟩+ ∥PnB(r, Yn(r))Qn∥2L2

]
dr

− αE
∫ T−δ

0
dt

∫ (t+δ)∧τMn

t∧τMn
∥Yn(r)− Yn(t ∧ τMn )∥α−2

H ⟨A(r, Yn(r)), Yn(t ∧ τMn )⟩dr

+
α(α− 2)

2
E
∫ T−δ

0
dt

∫ (t+δ)∧τMn

t∧τMn
∥Yn(r)− Yn(t ∧ τMn )∥α−4

H

× ∥
(
B(r, Yn(r))Qn

)∗(
Yn(r)− Yn(t ∧ τMn )

)
∥2Udr

= : J1 + J2 + J3. (2.48)
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Similarly to (2.43) and (2.44), one can show that

J1 ≤CMδ, (2.49)

|J2| ≤CMδ
α−1
α . (2.50)

On the other hand, by (H5) and the Fubini theorem it follows that

J3 ≤CME
∫ T∧τMn

0
∥PnB(r, Yn(r))Qn∥2L2

dr

∫ r

0∨(r−δ)
1{τMn >t}dt

≤CMδ. (2.51)

Combining (2.48)-(2.51) together, we obtain

sup
n∈N

E
∫ T−δ

0
∥YM

n (t+ δ)− YM
n (t)∥αHdt ≤ CM (δ + δ

α−1
α ). (2.52)

Therefore, (2.40) is proved. Thus, we complete the proof of this lemma. ■

Set
Υ := [Lα([0, T ], H) ∩ C([0, T ], V ∗)]× C([0, T ], U1),

where U1 is a Hilbert space such that the imbedding U ⊂ U1 is Hilbert-
Schmidt. From Lemma 2.12, we know that the family of the laws L(Yn,W )
of the random vectors (Yn,W ) is tight in Υ. By the Prohorov theorem and
the modified Skorohod representation theorem (see Theorem A.1 in [31] or
Theorem C.1 in [5]), there exist a new probability space (Ω̃, F̃ , P̃) and a

sequence of Υ-valued random vectors {(X̃n, W̃n)} and (X̃, W̃ ) such that

(i) W̃n = W̃ for any n ∈ N, P̃-a.s. ;

(ii) L(X̃n, W̃n) = L(Yn,W ) ;

(iii) P̃-a.s.,

∥X̃n − X̃∥Lα([0,T ],H) + ∥X̃n − X̃∥C([0,T ],V ∗) → 0. (2.53)

Next, we will show that (X̃, W̃ ) is a solution to equation (1.2).

Let F̃t be the filtration satisfying the usual conditions and generated by

{X̃n(s), X̃(s), W̃ (s) : s ≤ t}.

Then W̃ is an {F̃t}-cylindrical Wiener process on U . From the equation
(2.15) satisfied by the random vector (Yn,W ), it follows that

X̃n(t) =Pnx+

∫ t

0
PnA(s, X̃n(s))ds+

∫ t

0
PnB(s, X̃n(s))QndW̃ (s), t ∈ [0, T ].

(2.54)
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Moreover, {X̃n} also satisfies the same moment estimates as {Yn} in Lemma
2.10, i.e. for any p ≥ 2,

sup
n∈N

{
Ẽ
[
sup
t≤T

∥X̃n(t)∥pH
]
+ Ẽ

(∫ T

0
∥X̃n(t)∥αV dt

) p
2

}
<∞. (2.55)

Since ∥ · ∥H and ∥ · ∥V are lower semicontinuous in V ∗, by (2.53) and Fatou’s
lemma, we obtain

Ẽ sup
t∈[0,T ]

∥X̃(t)∥pH ≤Ẽ sup
t∈[0,T ]

lim inf
n→∞

∥X̃n(t)∥pH

≤Ẽ lim inf
n→∞

sup
t∈[0,T ]

∥X̃n(t)∥pH

≤ lim inf
n→∞

Ẽ sup
t∈[0,T ]

∥X̃n(t)∥pH <∞. (2.56)

Similarly,

Ẽ
(∫ T

0
∥X̃(s)∥αV ds

) p
2
<∞. (2.57)

Furthermore, by (2.55), (H4) and (H5), the following estimates hold.

Lemma 2.13. We have the following estimates,

sup
n∈N

E
∫ T

0
∥A(t, X̃n(t))∥

α
α−1

V ∗ dt <∞, (2.58)

sup
n∈N

E
∫ T

0
∥PnB(t, X̃n(t))Qn∥2L2

dt <∞. (2.59)

The above estimates together imply that there exist X̂ ∈ Lα(Ω̃×[0, T ], V ),

Ã ∈ L
α

α−1 (Ω̃× [0, T ], V ∗) and B̃ ∈ L2(Ω̃× [0, T ], L2(U,H)) such that, taking
a subsequence if necessary,

X̃n ⇀ X̂ in Lα(Ω̃× [0, T ], V ), (2.60)

A(·, X̃n(·))⇀ Ã in L
α

α−1 (Ω̃× [0, T ], V ∗), (2.61)

PnB(·, X̃n(·))Qn ⇀ B̃ in L2(Ω̃× [0, T ], L2(U,H)), (2.62)∫ ·

0
PnB(s, X̃n(s))QndW̃ (s)⇀

∫ ·

0
B̃(s)dW̃ (s) in L∞([0, T ], L2(Ω̃, H)),

(2.63)

here the notation “⇀” stands for the weak convergence. Set

X(t) := x+

∫ t

0
Ã(s)ds+

∫ t

0
B̃(s)dW̃ (s). (2.64)

Then it is easy to see that

X̃ = X̂ = X, P̃⊗ dt-a.s.. (2.65)

In fact, the equality on the far right is known in the literature, see e.g.
pages 87-88 in [34]. The first equality in (2.65) follows from the uniqueness
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of the limits. Moreover, by Theorem 4.2.5 in [26], we also know that X is
an H-valued continuous process. In view of (2.56), X̃ is H-valued, and by
its continuity in V ∗, X̃ is weakly continuous in H. Therefore, X̃ and X are
indistinguishable.

From now on, we will work on the new filtered probability space (Ω̃, F̃ , {F̃t}t≥0, P̃).
However, we will drop all the superscripts ˜ to simplify the notations, for
example, we write X̃n and X̃ as Xn and X respectively. Thus, (2.53) reads
as

∥Xn −X∥Lα([0,T ],H) + ∥Xn −X∥C([0,T ],V ∗) → 0, P-a.s.. (2.66)

Lemma 2.14. B(·) = B(·, X(·)), P⊗ dt almost everywhere.

Proof. Since ∥Xn −X∥Lα([0,T ],H) → 0, P-a.s., in view of (2.55) and (2.57),
we see that

lim
n→∞

E
∫ T

0
∥Xn(t)−X(t)∥κHdt = 0, ∀ κ ∈ [1, α). (2.67)

Therefore, we can find a subsequence still denoted by {Xn} such that

lim
n→∞

∥Xn(t, ω)−X(t, ω)∥H = 0, a.e. (t, ω). (2.68)

Thus by (H5), (2.55) and (2.56), we have

lim
n→∞

E
∫ T

0
∥PnB(t,Xn(t))Qn −B(t,X(t))∥2L2

dt = 0. (2.69)

(2.62) and the uniqueness of the limit imply that B(·) = B(·, X(·)). ■

To proceed, we will use the pseudo-monotonicity of the operator A. In
Lemma 5.2.13 of [26] (see also Lemma 2.2 of [22]), A was shown to be pseudo-
monotone under conditions (H1), (H2) and compact embedding V ⊆ H. By
the similar methods, we can show that A is still pseudo-monotone if we
replace condition (H2) by the weaker condition (H2)′. Here we give the
proof for readers’ convenience.

Lemma 2.15. Assume (H1) and (H2)′ hold, the embedding V ⊆ H is com-
pact. Then A(t, ·) is pseudo-monotone from V to V ∗ for a.e. t ∈ [0, T ].

Proof. Let N ⊆ [0, T ] be a null-set such that the assumptions (H1) and
(H2) hold for any t ∈ [0, T ]\N . We fix t ∈ [0, T ]\N and denote A(t, ·) by
A(·).

We need to show that if un converges weakly to u in V and

lim inf
n→∞

⟨A(un), un − u⟩ ≥ 0, (2.70)

then for any v ∈ V ,

lim sup
n→∞

⟨A(un), un − v⟩ ≤ ⟨A(u), u− v⟩. (2.71)
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Fix v ∈ V . Set R = ∥v∥V + supn∈N ∥un∥V . Since the embedding V ⊆ H is
compact, we have ∥un − u∥H → 0 and

lim
n→∞

⟨Kt(R)un, un − v⟩ = ⟨Kt(R)u, u− v⟩, (2.72)

where Kt(R) is the constant in (H2)′ with R above. Hence to prove (2.71),
it suffices to prove

lim sup
n→∞

⟨A0(un), un − v⟩ ≤ ⟨A0(u), u− v⟩, (2.73)

where A0(u) = A(u)−Kt(R)u.
By (H2)′ and the weak convergence of un, we have

lim sup
n→∞

⟨A0(un), un − u⟩ ≤ lim sup
n→∞

⟨A0(u), un − u⟩ ≤ 0. (2.74)

This together with (2.70) implies that

lim
n→∞

⟨A0(un), un − u⟩ = 0. (2.75)

Let z = u+ t(v − u) for t ∈ (0, 1), then ∥z∥V ≤ R. (H2)′ yields

⟨A0(un)−A0(z), un − z⟩ ≤ 0 (2.76)

and hence

⟨A0(un), un − u⟩ − ⟨A0(z), un − u⟩+ t⟨A0(un), u− v⟩ ≤ t⟨A0(z), u− v⟩.
(2.77)

By (2.75) and the weak convergence of un, we get

lim sup
n→∞

⟨A0(un), un − v⟩ ≤ ⟨A0(z), u− v⟩. (2.78)

Thus, letting t→ 0 and by the hemicontinuity (H1) we obtain (2.73). ■

The next lemma is crucial, which shows that the following operator:

X(·) 7−→ A(·, X(·))

is pseudo-monotone from Lα(Ω× [0, T ], V ) to L
α

α−1 (Ω× [0, T ], V ∗).

Lemma 2.16. Denote the weak convergence by the notation “⇀”. If

Xn ⇀ X in Lα(Ω× [0, T ], V ),

A(·, Xn(·))⇀ A in L
α

α−1 (Ω× [0, T ], V ∗), (2.79)

lim inf
n→∞

E
∫ T

0
⟨A(t,Xn(t)), Xn(t)⟩dt ≥ E

∫ T

0
⟨A(t), X(t)⟩dt, (2.80)

then A(·) = A(·, X(·)), P⊗ dt-a.e..
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Proof. The main idea used in this proof was initiated by [15]. The proof
here is inspired by [22, 39].

By (H3), (H4) and the Young inequality, we have

⟨A(t,Xn(t)), Xn(t)−X(t)⟩
≤ − c∥Xn(t)∥αV + f(t)(1 + ∥Xn(t)∥2H) + ∥A(t,Xn(t))∥V ∗∥X(t)∥V
≤− c∥Xn(t)∥αV + f(t)(1 + ∥Xn(t)∥2H)

+
[
f(t) + C∥Xn(t)∥αV

]α−1
α
[
1 + ∥Xn(t)∥βH

]α−1
α ∥X(t)∥V

≤− c

2
∥Xn(t)∥αV + f(t)(2 + ∥Xn(t)∥2H) + C∥X(t)∥αV

+ C∥Xn(t)∥β(α−1)
H ∥X(t)∥αV . (2.81)

To simplify the notation, we write

gn(t, ω) :=⟨A(t,Xn(t, ω)), Xn(t, ω)−X(t, ω)⟩,
Fn(t, ω) :=f(t)(2 + ∥Xn(t, ω)∥2H) + C∥X(t, ω)∥αV

+ C∥Xn(t, ω)∥β(α−1)
H ∥X(t, ω)∥αV . (2.82)

Then (2.81) reads as

gn(t, ω) ≤ − c
2
∥Xn(t, ω)∥αV + Fn(t, ω). (2.83)

The rest of the proof is divided into four steps.
Claim 1: for a.e. (t, ω), we have

lim sup
n→∞

gn(t, ω) ≤ 0. (2.84)

By (2.68) and Lemma 2.15, there exists a measurable subset Γ of Ω× [0, T ]
such that (Ω× [0, T ])\Γ is a P⊗ dt-null set,

lim
n→∞

∥Xn(t, ω)−X(t, ω)∥H = 0, ∀ (t, ω) ∈ Γ, (2.85)

and A(t, ·) is pseudo-monotone for any (t, ω) ∈ Γ. Now take any fixed
(t, ω) ∈ Γ and set

Λ := {n ∈ N : gn(t, ω) > 0}. (2.86)

If Λ is a finite set, then obviously (2.84) holds. If Λ is an infinite set, then
by (2.83) and (2.85), it follows that

sup
n∈Λ

∥Xn(t, ω)∥αV <∞. (2.87)

Consequently, there exists a subsequence {ni} from Λ and a element z ∈ V
such that Xni(t, ω) converges weakly to z in V . In view of (2.85), we must
have z = X(t, ω) and moreover,

lim
n→∞
n∈Λ

Xn(t, ω) = X(t, ω), (2.88)
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weakly in V . Thus, using the pseudo-monotonicity of A yields

lim sup
n→∞
n∈Λ

gn(t, ω) ≤ 0. (2.89)

On the other hand, by the definition of Λ,

lim sup
n→∞
n/∈Λ

gn(t, ω) ≤ 0. (2.90)

Hence Claim 1 is proved.

Claim 2:

lim
n→∞

E
∫ T

0
gn(t)dt = 0. (2.91)

By (2.85), we know that Fn(t, ω) converges for a.e. (t, ω). On the other
hand, it follows from (2.55) that Fn is uniformly integrable. Hence by a
generalized Fatou Lemma (see e.g. [9], p10), (2.83) and Claim 1, we get

lim sup
n→∞

E
∫ T

0
gn(t)dt ≤ E

∫ T

0
lim sup
n→∞

gn(t)dt ≤ 0. (2.92)

According to the condition (2.80),

lim inf
n→∞

E
∫ T

0
gn(t)dt ≥ 0. (2.93)

Thus combining (2.92) and (2.93) together proves Claim 2.

Claim 3: there exists a subsequence {ni} such that

lim
i→∞

gni(t, ω) = 0, for a.e. (t, ω). (2.94)

Set g+n (t, ω) := max{gn(t, ω), 0}. From Claim 1 it follows that

lim
n→0

g+n (t, ω) = 0, for a.e. (t, ω). (2.95)

Hence by (2.83) and the uniform integrability of Fn, we have

lim
n→∞

E
∫ T

0
g+n (t)dt = 0. (2.96)

Using |gn| = 2g+n − g and Claim 2, we see that

lim
n→∞

E
∫ T

0
|gn(t)|dt = 0. (2.97)

Claim 3 follows.

Claim 4: A(·) = A(·, X(·)), P ⊗ dt-a.e.. By (2.83) and Claim 3, we
have

sup
i∈N

∥Xni(t, ω)∥αV <∞, for a.e. (t, ω). (2.98)
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Due to (2.85), we deduce from (2.98) that for a.e. (t, ω), as i→ ∞,

Xni(t, ω)⇀ X(t, ω) weakly in V. (2.99)

Claim 3 together with the pseudo-monotonicity of A (see Remark 2.2) im-
plies that for a.e. (t, ω)

A(t,Xni(t, ω))⇀ A(t,X(t, ω)) weakly in V ∗. (2.100)

By (2.61) and the uniqueness of the limit, we can conclude that A(·) =
A(·, X(·)) proving Claim 4. ■

Theorem 2.17. There exists a probabilistically weak solution to equation
(1.2), which satisfies moment estimates (2.11).

Proof. We will show that the limit X of Xn obtained above is a solution
to equation (1.2). To this end, by (2.64), Lemma 2.14 and Lemma 2.16,
we only need to verify (2.80). Taking into account the equations (2.54),
(2.64) satisfied respectively by Xn and X, applying Ito’s formula and taking
expectations separately we obtain

E∥Xn(t)∥2H =∥Pnx∥2H + 2E
∫ T

0
⟨A(t,Xn(t)), Xn(t)⟩dt

+ E
∫ T

0
∥PnB(t,Xn(t))Qn∥2L2

dt, (2.101)

E∥X(t)∥2H =∥x∥2H + 2E
∫ T

0
⟨A(t), X(t)⟩dt

+ E
∫ T

0
∥B(t,X(t))∥2L2

dt. (2.102)

Since ∥Xn − X∥C([0,T ],V ∗) → 0 (see (2.66)), by the lower semicontinuity of
∥ · ∥H in V ∗ and Fatou’s lemma, we have

E∥X(t)∥2H ≤ E lim inf
n→∞

∥Xn(t)∥2H ≤ lim inf
n→∞

E∥Xn(t)∥2H . (2.103)

Hence in view of (2.69), and comparing (2.101) and (2.102), we see that
(2.80) holds. Moreover, the moment estimates (2.11) for X follow from the
estimates (2.56) and (2.57). ■

Theorem 2.18. If (H2) is satisfied, then the pathwise uniqueness holds for
solutions of equation (1.2).

Proof. Let X and X ′ be two solutions of equation (1.2) defined on a same
probability space and driven by the same Wiener process, with initial values
X(0) = x and X ′(0) = x′ respectively. Set

φ(t) := exp

(
−
∫ t

0

[
f(r) + ρ(X(r)) + η(X ′(r))

]
dr

)
. (2.104)

Then by Ito’s formula and (H2), we have

φ(t)∥X(t)−X ′(t)∥2H
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=∥x− x′∥2H +

∫ t

0
φ(s)

{
2⟨A(s,X(s))−A(s,X ′(s)), X(s)−X ′(s)⟩

+ ∥B(s,X(s))−B(s,X ′(s))∥2L2
−
[
f(s) + ρ(X(s)) + η(X ′(s))

]
∥X(s)−X ′(s)∥2H

}
+ 2

∫ T

0
φ(s)

(
X(s)−X ′(s),

[
B(s,X(s))−B(s,X ′(s))

]
dW (s)

)
≤∥x− x′∥2H + 2

∫ t

0
φ(s)

(
X(s)−X ′(s),

[
B(s,X(s))−B(s,X ′(s))

]
dW (s)

)
.

(2.105)

Let {σl} ↑ ∞ be a sequence of stopping times such that the local martingale
in the above inequality is a martingale. Then taking the expectation on
both sides of the above inequality, we get

E
[
φ(t ∧ σl)∥X(t ∧ σl)−X ′(t ∧ σl)∥2H

]
≤ ∥x− x′∥2H . (2.106)

Letting l → ∞ and applying Fatou’s lemma yield

E
[
φ(t)∥X(t)−X ′(t)∥2H

]
≤ ∥x− x′∥2H . (2.107)

Note that∫ T

0

[
f(r) + ρ(X(r)) + η(X ′(r))

]
dr <∞, P-a.s.. (2.108)

(2.107) in particular implies the pathwise uniqueness of solutions to equation
(1.2). ■

Theorem 2.6 is a combination of the above Theorem 2.17 and Theorem
2.18. Next we give

Proof of Theorem 2.8. Define stopping times

σMn :=T ∧ inf
{
t ≥ 0 : ∥X(t, xn)∥H > M

}
∧ inf

{
t ≥ 0 :

∫ t

0
∥X(s, xn)∥αV ds > M

}
∧ inf

{
t ≥ 0 : ∥X(t, x)∥H > M

}
∧ inf

{
t ≥ 0 :

∫ t

0
∥X(s, x)∥αV ds > M

}
.

Then by the moment estimates (2.11) for the solutions we have

lim
M→∞

sup
n∈N

P(σMn < T ) = 0. (2.109)

From (2.106) and (2.107), it follows that

E
[
φn(t ∧ σMn )∥X(t ∧ σMn , xn)−X(t ∧ σMn , x)∥2H

]
≤ ∥xn − x∥2H , (2.110)
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where

φn(t) := exp

(
−
∫ t

0

[
f(r) + ρ(X(r, xn)) + η(X(r, x))

]
dr

)
. (2.111)

Now, for any ϵ > 0, there exists a constant CM > 0 such that

P
(
∥X(t, xn)−X(t, x)∥H ≥ ϵ

)
≤P
(
∥X(t, xn)−X(t, x)∥H ≥ ϵ, σnM ≥ T

)
+ P(σnM < T )

≤ 1

ϵ2CM
E
[
φn(t ∧ σMn )∥X(t ∧ σMn , xn)−X(t ∧ σMn , x)∥2H

]
+ P(σnM < T )

≤ 1

ϵ2CM
∥xn − x∥2H + sup

n∈N
P(τnM < T ). (2.112)

In view of (2.109), we let n → ∞ and then M → ∞ to get that for any
t ∈ [0, T ],

lim
n→∞

∥X(t, xn)−X(t, x)∥H = 0, in probability P. (2.113)

Furthermore, by Lemma 2.10, we see that for any p ≥ 2,

sup
n∈N

E
[
sup
t≤T

∥X(t, xn)∥pH
]
<∞. (2.114)

Hence, it follows that

lim
n→∞

E
∫ T

0
∥X(t, xn)−X(t, x)∥2Hdt = 0. (2.115)

In particular,

∥X(t, xn)−X(t, x)∥H −−−→
n→∞

0 in measure P⊗ dt. (2.116)

Therefore, by (H5) and (2.114) we get

lim
n→∞

E
∫ T

0
∥B(t,X(t, xn))−B(t,X(t, x))∥2L2

dt = 0. (2.117)

Now, by (2.105), the BDG inequality and the Young inequality, we have

E sup
t≤T∧σM

n

[
φn(t)∥X(t, xn)−X(t, x)∥2H

]
≤∥xn − x∥2H + 2E sup

t≤T∧σM
n

∣∣∣ ∫ t

0
φn(s)

(
X(s, xn)−X(s, x),

[
B(s,X(s, xn))−B(s,X(s, x))

]
dW (s)

)∣∣∣
≤∥xn − x∥2H + CE

(∫ T∧σM
n

0
φn(t)

2∥X(t, xn)−X(t, x)∥2H

× ∥B(t,X(t, xn))−B(t,X(t, x))∥2L2
dt
) 1

2

≤∥xn − x∥2H +
1

2
E sup

t≤T∧σM
n

[
φn(t)∥X(t, xn)−X(t, x)∥2H

]
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+ CE
∫ T∧σM

n

0
φn(t)∥B(t,X(t, xn))−B(t,X(t, x))∥2L2

dt. (2.118)

(2.118) and (2.117) imply

lim
n→∞

E sup
t≤T∧σM

n

[
φn(t)∥X(t, xn)−X(t, x)∥2H

]
= 0. (2.119)

Arguing as (2.112) again yields

lim
n→∞

sup
t≤T

∥X(t, xn)−X(t, x)∥H = 0, in probability P. (2.120)

Hence, it follows from (2.114) that

lim
n→∞

E
[
sup
t≤T

∥X(t, xn)−X(t, x)∥pH
]
= 0, (2.121)

completing the proof. ■

3 Part II

In this part, we will allow the dependence of ∥B(t, u)∥L2 on the V -norm
∥u∥V . In the situation of classical stochastic partial differential equations,
this typically means that B(t, u) is allowed to depend also on the gradient
∇u of the solution function u. We will modify the arguments used in Sec-
tion 2 to establish the well-posedness of equation (1.2) under a new set of
local monotone conditions which are slight adjustment of the hypotheses in
Section 2. Let us now introduce the assumptions.

Let f ∈ L1([0, T ],R+), α ∈ (1,∞) and β ∈ [0,∞).

(H2)* There exist nonnegative constants θ ∈ [0, α), γ, λ and C such that for
a.e. t ∈ [0, T ], and any u, v ∈ V ,

2⟨A(t, u)−A(t, v), u− v⟩+ ∥B(t, u)−B(t, v)∥2L2

≤[f(t) + ρ(u) + η(v)]∥u− v∥2H , (3.1)

where ρ and η are two measurable functions from V to R satisfying

|ρ(u)| ≤C(1 + ∥u∥λH) + C∥u∥θV (1 + ∥u∥γH), (3.2)

|η(u)| ≤C(1 + ∥u∥2+β
H ) + C∥u∥αV (1 + ∥u∥βH). (3.3)

(H3)* There exists a constant LA > 0 such that for a.e. t ∈ [0, T ], and any
u ∈ V ,

⟨A(t, u), u⟩ ≤ f(t)(1 + ∥u∥2H)− LA∥u∥αV . (3.4)

(H4)* There exists nonnegative constant C such that for a.e. t ∈ [0, T ], and
any u ∈ V ,

∥A(t, u)∥
α

α−1

V ∗ ≤ f(t)(1 + ∥u∥2+β
H ) + C∥u∥αV (1 + ∥u∥βH). (3.5)
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(H5)* There exists g ∈ L1([0, T ],R+) and a constant LB ≥ 0 such that for
a.e. t ∈ [0, T ], and any u ∈ V ,

∥B(t, u)∥2L2
≤ g(t)(1 + ∥u∥2H) + LB∥u∥αV . (3.6)

Remark 3.1. The stronger condition θ < α (than that in (H2)) in (H2)*
is important to the proof of Theorem 3.2 below. As the positions of ρ and
η in (3.1) are symmetric, ρ and η can interchange in (3.2) and (3.3). In
contrast to (H5) of Section 2, in (H5)* there is no assumption of continuity
of B with respect to H-norm and B can depend on the V -norm, which is
the main focus of this section.

The main result in this part reads as follows

Theorem 3.2. Suppose that the embedding V ⊆ H is compact and that
(H1), (H2)*, (H3)*, (H4)*, (H5)* hold with

LB <
2LA

χ
, (3.7)

where

χ =

{
max{1 + β, 1 + λ, 1 + γ + 2θ

α }, when α ≤ 2,

max{1 + β, 3 + λ− α, 3 + γ + θ − α}, when α > 2.
(3.8)

Then for any initial value x ∈ H, there exists a unique probabilistically
strong solution to equation (1.2). Furthermore, for any

2 ≤ p < 1 +
2LA

LB
, (3.9)

we have the following moment estimate,

E
{

sup
t∈[0,T ]

∥X(t)∥pH
}
+ E

{(∫ T

0
∥X(t)∥αV dt

) p
2

}
<∞. (3.10)

Moreover, let {xn}∞n=1 and x be a sequence in H with ∥xn − x∥H → 0, and
let X(t, x) be the unique solution of (1.2) with the initial value x. Then

lim
n→∞

E
[
sup
t≤T

∥X(t, xn)−X(t, x)∥pH
]
= 0, (3.11)

for p satisfying (3.9).

The rest of this part is devoted to the proof of Theorem 3.2. We will
assume the conditions of Theorem 3.2 throughout.

As in Section 2, our starting point is the sequence of Galerkin approx-
imating solutions. Since we do not assume that B is continuous on H,
some of the proofs (e.g. the proof of Theorem 2.17) are not valid. The
pseudo-monotonicity argument doesn’t work in this case. We will instead
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combine the tightness of the Galerkin approximations with the monotonicity
argument.

Now we establish the uniform moment estimates of Galerkin approxi-
mating solutions {Yn} under the new assumptions. Since we will pass to
a new probability space as in Section 2, for the simplicity of notations, we
write Yn as Xn.

Lemma 3.3. For any p satisfying (3.9), there exists a constant Cp such
that

sup
n∈N

{
E
[
sup
t≤T

∥Xn(t)∥pH
]
+ E

∫ T

0
∥Xn(t)∥αV ∥Xn(t)∥p−2

H dt

+E
(∫ T

0
∥Xn(t)∥αV dt

) p
2

}
≤ Cp(1 + ∥x∥pH). (3.12)

Proof. Using Ito’s formula it follows that

∥Xn(t)∥pH ≤∥Pnx∥pH + p

∫ t

0
∥Xn(s)∥p−2

H ⟨A(s,Xn(s)), Xn(s)⟩ds

+
p(p− 1)

2

∫ t

0
∥Xn(s)∥p−2

H ∥B(s,Xn(s))∥2L2
ds

+ p

∫ t

0
∥Xn(s)∥p−2

H

(
Xn(s), B(s,Xn(s))QndW (s)

)
≤∥Pnx∥pH + p

∫ t

0
∥Xn(s)∥p−2

H

[
− LA∥Xn(s)∥αV + f(s)(1 + ∥Xn(s)∥2H)

]
ds

+
p(p− 1)

2

∫ t

0
∥Xn(s)∥p−2

H

[
LB∥Xn(s)∥αV + g(s)(1 + ∥Xn(s)∥2H)

]
ds

+ p

∫ t

0
∥Xn(s)∥p−2

H

(
Xn(s), B(s,Xn(s))QndW (s)

)
. (3.13)

Rearranging terms and using stopping arguments, we get

E∥Xn(t)∥pH + p
(
LA − p− 1

2
LB

)
E
∫ t

0
∥Xn(s)∥αV ∥Xn(s)∥p−2

H ds

≤∥x∥pH + Cp

∫ T

0

[
f(s) + g(s)

]
ds+ CpE

∫ t

0

[
f(s) + g(s)

]
∥Xn(s)∥pHds.

(3.14)

The range of the parameter p implies

LA − p− 1

2
LB > 0. (3.15)

By (3.14) and Gronwall’s inequality we obtain

sup
n∈N

{
sup
t≤T

E∥Xn(t)∥pH + E
∫ T

0
∥Xn(s)∥αV ∥Xn(s)∥p−2

H ds

}
≤ Cp(1 + ∥x∥pH).

(3.16)
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Again using (3.13) and (H3), we have

E
[
sup
t≤T

∥Xn(t)∥pH
]
+ pLAE

∫ T

0
∥Xn(s)∥αV ∥Xn(s)∥p−2

H ds

≤∥Pnx∥pH + pE
∫ T

0
∥Xn(s)∥p−2

H f(s)(1 + ∥Xn(s)∥2H)ds

+
p(p− 1)

2
E
∫ T

0
∥Xn(s)∥p−2

H ∥B(s,Xn(s))∥2L2
ds

+ pE sup
t≤T

∣∣∣∣∫ t

0
∥Xn(s)∥p−2

H

(
Xn(s), B(s,Xn(s))QndW (s)

)∣∣∣∣ . (3.17)

Similarly to (2.22), by the BDG inequality and Young’s inequality we deduce
that

pE sup
t≤T

∣∣∣∣∫ t

0
∥Xn(s)∥p−2

H

(
Xn(s), B(s,Xn(s))QndW (s)

)∣∣∣∣
≤1

2
E sup

t≤T
∥Xn(t)∥pH + CE

∫ T

0
∥Xn(s)∥p−2

H ∥B(s,Xn(s))∥2L2
ds. (3.18)

Combining (3.17) and (3.18) together and using (H5), we otain

E
[
sup
t≤T

∥Xn(t)∥pH
]

≤∥x∥pH + CpE
∫ T

0

[
f(s) + g(s)

]
ds×

(
1 + sup

s≤T
E∥Xn(s)∥pH

)
+ CpE

∫ T

0
∥Xn(s)∥αV ∥Xn(s)∥p−2

H ds. (3.19)

Therefore, it follows from (3.16) that

sup
n∈N

E
[
sup
t≤T

∥Xn(t)∥pH
]
≤ Cp(1 + ∥x∥pH). (3.20)

By (2.17), (H3) and (H5), we have

E
(∫ T

0
∥Xn(t)∥αV dt

) p
2

≤C∥Pnx∥pH + CE
∣∣∣∣∫ T

0

[
f(t) + g(t)

](
1 + ∥Xn(t)∥2H

)
dt

∣∣∣∣
p
2

+ CE
∣∣∣∣∫ T

0

(
Xn(t), B(t,Xn(t))QndW (t)

)∣∣∣∣
p
2

. (3.21)

By the BDG inequality and (H5), we get

CE
∣∣∣∣∫ T

0

(
Xn(t), B(t,Xn(t))QndW (t)

)∣∣∣∣
p
2

≤CE
(∫ T

0
∥Xn(t)∥2H

[
g(t)(1 + ∥Xn(t)∥2H) + LB∥Xn(t)∥αV

]
dt
) p

4
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≤CE
{[

1 + sup
t≤T

∥Xn(t)∥4H
] ∫ T

0
g(t)dt

} p
4

+ CE
{
sup
t≤T

∥Xn(t)∥2H ·
∫ T

0
∥Xn(t)∥αV dt

} p
4

≤1

2
E
(∫ T

0
∥Xn(t)∥αV dt

) p
2
+ C

(
1 + E

[
sup
t≤T

∥Xn(t)∥pH
])
. (3.22)

Combining (3.21) and (3.22) together, we derive that

E
(∫ T

0
∥Xn(t)∥αV dt

) p
2 ≤ Cp

(
1 + ∥x∥pH + E

[
sup
t≤T

∥Xn(t)∥pH
])
. (3.23)

(3.23) and (3.20) together gives the desired estimate (3.12). We complete
the proof of this lemma. ■

Repeating the proof of Lemma 2.12, we see that the family of the laws
of {Xn}∞n=1 is tight in the space Lα([0, T ], H). We like to point out that the
laws of {Xn}∞n=1 might not be tight in the space C([0, T ], V ∗). Thus by the
Prohorov theorem and the modified Skorohod representation theorem, we
can pass to a new filtered probability space (still written as (Ω,F , {Ft},P))
similarly as in Section 2, and we may as well assume there exists an {Ft}-
adapted process X such that

∥Xn −X∥Lα([0,T ],H) → 0, P-a.s.. (3.24)

By (H4)*, (H5)* and Lemma 3.3, the following uniform estimates hold,

sup
n∈N

E
∫ T

0
∥A(t,Xn(t))∥

α
α−1

V ∗ dt <∞, (3.25)

sup
n∈N

E
∫ T

0
∥PnB(t,Xn(t))Qn∥2L2

dt <∞. (3.26)

Similarly to (2.67) and (2.68), we have (take a subsequence if necessary)

lim
n→∞

∥Xn(t, ω)−X(t, ω)∥H = 0, a.e. (t, ω). (3.27)

Also as in Section 2, Xn converges weakly to X in Lα(Ω× [0, T ], V ), and

X(t) = x+

∫ t

0
A(s)ds+

∫ t

0
B(s)dW (s), P⊗ dt-a.e., (3.28)

where A and B are limits of the following weak convergence (up to a subse-
quence),

A(·, Xn(·))⇀ A in L
α

α−1 (Ω× [0, T ], V ∗), (3.29)

PnB(·, Xn(·))Qn ⇀ B in L2(Ω× [0, T ], L2(U,H)). (3.30)

The next result concludes that X is a solution to the equation (1.2).
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Lemma 3.4. B(·) = B(·, X(·)) and A(·) = A(·, X(·)), P ⊗ dt-a.e.. Conse-
quently, X is a solution to equation (1.2).

Proof. Fix any T > 0, dt denotes the Lebesgue measure on the interval
[0, T ]. Let u be any given H-valued continuous adapted process such that

E
[
sup
t≤T

∥u(t)∥2+β
H

]
+ E

∫ T

0
∥u(t)∥αV

(
1 + ∥u(t)∥βH

)
dt <∞. (3.31)

Define the stopping time

τMu :=T ∧ inf
{
t ≥ 0 : ∥u(t)∥2H > M

}
∧ inf

{
t ≥ 0 :

∫ t

0
∥u(s)∥αV ds > M

}
. (3.32)

Then

lim
M→∞

P(τMu < T ) = 0. (3.33)

For any ϵ > 0,

P⊗ dt
({

(t, ω) : ∥Xn(t ∧ τMu (ω), ω)−X(t ∧ τMu (ω), ω)∥H > ϵ
})

≤P⊗ dt
({

(t, ω) : ∥Xn(t ∧ τMu (ω), ω)−X(t ∧ τMu (ω), ω)∥H > ϵ
}

∩
{
(t, ω) : τMu ≥ T

})
+ P⊗ dt

({
(t, ω) : τMu (ω) < T

})
≤P⊗ dt

({
(t, ω) : ∥Xn(t, ω)−X(t, ω)∥H > ϵ

})
+ TP

({
ω : τMu (ω) < T

})
. (3.34)

Letting n→ ∞ and M → ∞, in view of (3.27) and (3.33), we obtain

lim
n→∞
M→∞

∥Xn(t ∧ τMu )−X(t ∧ τMu )∥H = 0, in measure P⊗ dt. (3.35)

Hence for any ψ ∈ L∞([0, T ],R+), by Lemma 3.3 and (3.35) it follows that

lim
M→∞

E
∫ T

0
ψ(t)

[
∥X(t ∧ τMu )∥2H − ∥x∥2H

]
dt

= lim
M→∞

lim inf
n→∞

E
∫ T

0
ψ(t)

[
∥Xn(t ∧ τMu )∥2H − ∥Pnx∥2H

]
dt. (3.36)

Using Ito’s formula and inserting terms we get

E∥Xn(t ∧ τMu )∥2H − ∥Pnx∥2H

=E
∫ t∧τMu

0

[
2⟨A(s,Xn(s)), Xn(s)⟩+ ∥PnB(s,Xn(s))Qn∥2L2

]
ds

≤E
∫ t∧τMu

0

[
2⟨A(s,Xn(s))−A(s, u(s)), Xn(s)− u(s)⟩
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+ ∥B(s,Xn(s))−B(s, u(s))∥2L2

]
ds

+ E
∫ t∧τMu

0

[
2⟨A(s,Xn(s)), u(s)⟩+ 2⟨A(s, u(s)), Xn(s)⟩ − 2⟨A(s, u(s)), u(s)⟩

+ 2
(
B(s,Xn(s)), B(s, u(s))

)
L2

− ∥B(s, u(s))∥2L2

]
ds. (3.37)

Hence by the Fubini theorem, (H2)*, Lemma 3.3, (3.29) and (3.30), it follows
that

lim inf
n→∞

E
∫ T

0
ψ(t)

[
∥Xn(t ∧ τMu )∥2H − ∥Pnx∥2H

]
dt

≤ lim inf
n→∞

E
∫ T

0
ψ(t)

∫ t∧τMu

0

[
f(s) + ρ(Xn(s)) + η(u(s))

]
∥Xn(s)− u(s)∥2Hdsdt

+ E
∫ T

0
ψ(t)

∫ t∧τMu

0

[
2⟨A(s), u(s)⟩+ 2⟨A(s, u(s)), X(s)⟩ − 2⟨A(s, u(s)), u(s)⟩

+ 2
(
B(s), B(s, u(s))

)
L2

− ∥B(s, u(s))∥2L2

]
dsdt. (3.38)

Due to (3.31), the limit, as M → ∞, of the second term on the right hand
side of the above inequality is finite. On the other hand, by (3.28) and Ito’s
formula we have

E
∫ T

0
ψ(t)

[
∥X(t ∧ τMu )∥2H − ∥x∥2H

]
dt

=E
∫ T

0
ψ(t)

∫ t∧τMu

0

[
2⟨A(s), X(s)⟩+ ∥B(s)∥2L2

]
dsdt. (3.39)

Combining (3.36), (3.38) and (3.39) together yields

lim
M→∞

E
∫ T

0
ψ(t)

∫ t∧τMu

0

[
2⟨A(s)−A(s, u(s)), X(s)− u(s)⟩+ ∥B(s)−B(s, u(s))∥2L2

]
dsdt

≤ lim
M→∞

lim inf
n→∞

E
∫ T

0
ψ(t)

∫ t∧τMu

0

[
f(s) + ρ(Xn(s)) + η(u(s))

]
∥Xn(s)− u(s)∥2Hdsdt.

(3.40)

By the dominated convergence theorem, we can remove the limit sign on
the left side of (3.40) to obtain

E
∫ T

0
ψ(t)

∫ t

0

[
2⟨A(s)−A(s, u(s)), X(s)− u(s)⟩+ ∥B(s)−B(s, u(s))∥2L2

]
dsdt

≤C lim
M→∞

lim inf
n→∞

E
∫ T∧τMu

0

[
f(s) + ρ(Xn(s)) + η(u(s))

]
∥Xn(s)− u(s)∥2Hds.

(3.41)

Now take u = X in the above inequality to get

E
∫ T

0
ψ(t)

∫ t

0
∥B(s)−B(s,X(s))∥2L2

dsdt
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≤C lim
M→∞

lim inf
n→∞

E
∫ T∧τMX

0

[
f(s) + ρ(Xn(s)) + η(X(s))

]
∥Xn(s)−X(s)∥2Hds.

(3.42)

Set

I :=E
∫ T∧τMX

0
f(s)∥Xn(s)−X(s)∥2Hds,

II :=E
∫ T∧τMX

0
ρ(Xn(s))∥Xn(s)−X(s)∥2Hds,

III :=E
∫ T∧τMX

0
η(X(s))∥Xn(s)−X(s)∥2Hds. (3.43)

Thus to obtain B(·) = B(·, X(·)), it suffices to show that

lim
M→∞

lim inf
n→∞

(I + II + III) = 0. (3.44)

By (3.27) and Lemma 3.3, we have

lim
M→∞

lim
n→∞

I ≤ lim
n→∞

E
∫ T

0
f(s)∥Xn(s)−X(s)∥2Hds = 0. (3.45)

By (3.3) and the definition of τMX , it is easy to see that

lim
M→∞

lim
n→∞

III ≤ lim
M→∞

[
CM lim

n→∞
E
∫ T

0
∥Xn(s)−X(s)∥2Hds

]
= 0. (3.46)

Next, we look at the term II. By (3.2),

II ≤CE
∫ T∧τMX

0
(1 + ∥Xn(s)∥λH)∥Xn(s)−X(s)∥2Hds

+ CE
∫ T∧τMX

0
∥Xn(s)∥θV ∥Xn(s)∥γH∥Xn(s)−X(s)∥2Hds

+ CE
∫ T∧τMX

0
∥Xn(s)∥θV ∥Xn(s)−X(s)∥2Hds

= : II1 + II2 + II3. (3.47)

Take p so that

1 + χ < p < 1 +
2LA

LB
. (3.48)

In view of (3.8), we have{
λ+ 2 < p, when α ≤ 2,

λ+ 2 < α+ p− 2, when α > 2.
(3.49)

If α ≤ 2, let q = p
λ+2 > 1, then Lemma 3.3 implies that

CE
∫ T

0

[
(1 + ∥Xn(s)∥λH)∥Xn(s)−X(s)∥2H

]q
ds
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≤C

{
1 + sup

n∈N
E
[
sup
s≤T

∥Xn(s)∥pH
]
+ E

[
sup
s≤T

∥X(s)∥pH
]}

<∞. (3.50)

Thus, by (3.27) and the above inequality it holds that

lim
M→∞

lim
n→∞

II1 ≤ C lim
n→∞

E
∫ T

0
(1 + ∥Xn(s)∥λH)∥Xn(s)−X(s)∥2Hds = 0.

(3.51)

If α > 2, let q = α+p−2
λ+2 > 1, then by Hölder’s inequality and Lemma 3.3,

we get

E
∫ T

0

[
(1 + ∥Xn(s)∥λH)∥Xn(s)−X(s)∥2H

]q
≤C + CE

∫ T

0
∥Xn(s)∥αV ∥Xn(s)∥p−2

H ds

+ CE
∫ T

0
∥Xn(s)∥α1

V ∥X(s)∥α2
V ∥Xn(s)∥p1H ∥X(s)∥p2H ds

≤C
{
1 + sup

n∈N
E
[
sup
s≤T

∥Xn(s)∥pH
]
+ E

[
sup
s≤T

∥X(s)∥pH
]

+ sup
n∈N

E
(∫ T

0
∥Xn(s)∥αV ds

) p
2
+ E

(∫ T

0
∥X(s)∥αV ds

) p
2

}
<∞, (3.52)

where α1, α2, p1, p2 are nonnegative constants satisfying α1 + α2 = α and
p1 + p2 = p − 2. Hence, (3.51) holds as well. To treat the term II2, we
consider three cases according to the range of the parameter γ. If

0 < γ ≤ θ(p− 2)

α
− 2, (3.53)

then we have

CE
∫ T

0
∥Xn(s)∥θV ∥Xn(s)∥γH∥Xn(s)−X(s)∥2Hds

≤C
{
E
∫ T

0

[
∥Xn(s)∥θV ∥Xn(s)∥γH

(
∥Xn(s)∥

2−α−θ
α

H + ∥X(s)∥2−
α−θ
α

H

)]α
θ
ds

} θ
α

×
{
E
∫ T

0
∥Xn(s)−X(s)∥Hds

}α−θ
α

. (3.54)

Similar to (3.52), by Hölder’s inequality and Lemma 3.3, we can see that in
this case,

lim
M→∞

lim
n→∞

II2 ≤ C

{
lim
n→∞

E
∫ T

0
∥Xn(s)−X(s)∥Hds

}α−θ
α

= 0. (3.55)

If

γ >
θ(p− 2)

α
, (3.56)
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then Lemma 3.3 implies that

II2 ≤C
{
E
∫ T

0

[
∥Xn(s)∥θV ∥Xn(s)∥

θ(p−2)
α

H

]α
θ
ds

} θ
α

×
{
E
∫ T

0

[
∥Xn(s)∥

γ− θ(p−2)
α

H ∥Xn(s)−X(s)∥2H
] α

α−θ
ds

}α−θ
α

≤C
{
E
∫ T

0

[
∥Xn(s)∥

γ− θ(p−2)
α

H ∥Xn(s)−X(s)∥2H
] α

α−θ
ds

}α−θ
α

. (3.57)

In view of (3.48) and (3.8), we have{
2 + γ + 2θ

α < p, when α ≤ 2,

4 + γ + θ − α < p, when α > 2.
(3.58)

By the similar arguments as for (3.50)-(3.52), we can show that

lim
M→∞

lim
n→∞

II2 = 0. (3.59)

The case that

θ(p− 2)

α
− 2 < γ ≤ θ(p− 2)

α
(3.60)

is similar, but simpler, we omit the details. Also similar arguments lead to

lim
M→∞

lim
n→0

II3 = 0. (3.61)

Putting (3.47), (3.51), (3.55), (3.59) and (3.61) together yields

lim
M→∞

lim
n→∞

II = 0. (3.62)

Therefore, (3.44) follows and hence B(·) = B(·, X(·)), a.e..

Taking u = X − εϕe in (3.41) for any ε > 0, ϕ ∈ L∞(Ω× [0, T ],R) and
e ∈ V , then dividing both sides by ε and letting ε → 0+, by (H1), (3.2),
(3.3) and Lemma 3.3, we obtain

E
∫ T

0
ψ(t)

∫ t

0
⟨A(s)−A(s,X(s)), e⟩ϕ(s)dsdt ≤ 0. (3.63)

By the arbitrariness of e, ϕ and ψ, we conclude that A(·) = A(·, X(·)), a.e..
■

Completion of the proof of Theorem 3.2. By (3.28) and Lemma 3.4, we
know that X is a probabilistically weak solution of equation (1.2). Accord-
ing to Theorem 2.18, the pathwise uniqueness of solutions holds. Thus the
well-known Yamada-Watanabe theorem implies that there exists a unique
probabilistically strong solution to equation (1.2). The proof of the continu-
ity of the solution with respect to the initial value is the same as in Section
2.
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4 Applications

The results of in Section 2 and Section 3 are applicable to a large class of
SPDE. It should be pointed out that all the examples considered in [34, 26,
24, 22] can be covered by our framework, including the 2D Navier-Stokes
equations, porous media equations, fast-diffusion equations, p-Laplacian
equations, Burgers equations, Allen-Cahn equations, 3D Leray-α model,
2D Boussinesq system, 2D magneto-hydrodynamic equations, 2D Boussi-
nesq model for the Bénard convection, 2D magnetic Bénard equations, some
shell models of turbulence (GOY, Sabra, dyadic), power law fluids, the La-
dyzhenskaya model, the Kuramoto-Sivashinsky equations and the 3D tamed
Navier-Stokes equations. In this section, we will present some examples
which can not be covered in the framework previously in the literature, but
are covered by our frameworks in Section 2 or Section 3.

Example 4.1 (Quasilinear SPDEs). Let O be a bounded domain in Rd

with smooth boundary ∂O. We consider the following quasilinear partial
differential equation:

∂tu(t, x) = ∇ · a
(
t, x, u(t, x),∇u(t, x)

)
− a0

(
t, x, , u(t, x),∇u(t, x)

)
, (4.1)

with the zero Dirichlet boundary conditions (the case of other boundary
conditions is similar), where u : [0, T ] × O → R, the vector ∇u(t, x) =
(∂iu(t, x))

d
i=1 is the gradient of u with respect to the spatial variable x.

a = (a1, a2, · · · , ad) is a vector with ai : [0, T ]×O × R× Rd → Rd for each
i = 0, 1, · · · , n.

We assume that ai, i = 0, 1, 2, · · · , d, satisfy the following conditions:
there exists a constant α > 1 if d = 1, 2 and α ≥ 2d

d+2 if d ≥ 3, such that

(S1) ai satisfies the Carathéodory conditions: for a.e. fixed (t, x) ∈ [0, T ]×
O, ai(t, x, u, z) is continuous in (u, z) ∈ R×Rd, for each fixed (u, z) ∈
R× Rd, ai(t, x, u, z) is measurable with respect to (t, x) ∈ [0, T ]×O.

(S2) There exist nonnegative constants c1, c2 and a function f1 ∈ L
α

α−1 ([0, T ]×
O,R+) such that for a.e. (t, x) ∈ [0, T ] × O and all (u, z) ∈ R × Rd,
i = 1, · · · , d,

|ai(t, x, u, z)| ≤ c1|z|α−1 + c2|u|
(α−1)(d+2)

d + f1(t, x). (4.2)

(S3) There exists nonnegative constant c3, c4, and a function f2 ∈ L1([0, T ]×
O,R+) such that for a.e. (t, x) ∈ [0, T ]×O and all (u, z) ∈ R× Rd,

d∑
i=1

ai(t, x, u, z)zi + a0(t, x, u, z)u ≥ c3|z|α − c4|u|2 − f2(t, x). (4.3)

(S4) For a.e. (t, x) ∈ [0, T ]×O and all u ∈ R and z, z̃ ∈ Rd such that z ̸= z̃,

d∑
i=1

[ai(t, x, u, z)− ai(t, x, u, z̃)](zi − z̃i) > 0. (4.4)
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And for a.e. (t, x) ∈ [0, T ]×O, and any M > 0,

lim
|z|→∞

sup|u|≤M

∑d
i=1 ai(t, x, u, z)zi

|z|+ |z|α−1
= ∞. (4.5)

Set H := L2(O) and V := W 1,α
0 (O), the usual Sobolev space with zero

trace. By the Sobolev embedding theorem, we have the Gelfand triple V ⊆
H ⊆ V ∗, and the embedding V ⊆ H is compact. For u, v ∈ V , the operator
A is defined as follows

⟨A(t, u), v⟩ = −
∫
O

{ d∑
i=1

ai
(
t, x, u(x),∇u(x)

)
∂iu(x)

+ a0
(
t, x, , u(x),∇u(x)

)
v(x)

}
dx. (4.6)

Recall the Gagliardo-Nirenberg inequality for 1 ≤ p ≤ ∞,

∥u∥Lp(O) ≤ C∥∇u∥δLα(O)∥u∥
1−δ
L2(O)

, (4.7)

where

δ ∈ [0, 1] and
1

p
=
( 1
α
− 1

d

)
δ +

1− δ

2
. (4.8)

Then it follows from (S2) and (4.7) that A is a measurable mapping from
[0, T ]× V to V ∗, and moreover,

∥A(t, u)∥V ∗ ≤ c1∥u∥αV + c∥u∥αV ∥u∥
2α
d
H + F (t), (4.9)

where

F (t) =

∫
O
f1(t, x)

α
α−1dx. (4.10)

is integrable on [0, T ]. Thus, the growth condition (H4) in Section 2 is
satisfied. By (S1) and (S2) it’s easy to see that the hemicontinuity condition
(H1) is satisfied. (S3) and (4.7) imply the coercivity condition (H3) in
Section 2. By (S1), (S2) and (S4), we can show that the operator A is
pseudo-monotone for a.e. t ∈ [0, T ], see Theorem 10.65 and Theorem 10.63
in [36], or Theorem 2.8 in [21]. Therefore, we can apply Corollary 2.7 to
obtain the existence of probabilistically weak solutions to the corresponding
stochastic quasilinear partial differential equations.

A typical example of (4.1) is the p-Laplacian for p ≥ 2,

∂tu = ∇ · (|∇u|p−2∇u)− c|u|p−2u, (4.11)

where c > 0. In this case we take α = p, and it is easy to verify that
(S1)-(S4) are satisfied.

To get the uniqueness of solutions to (4.1), we need to replace the as-
sumption (S4) by the following condition: for α ≥ d.
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(S4)′ Let 0 ≤ γ ≤ α(1 + 2
d) − 2 and f3 ∈ L1([0, T ],R+). There exists a

constant c > 0 such that for a.e. (t, x) ∈ [0, T ] × O and all u, ũ ∈ R
and z, z̃ ∈ Rd,

d∑
i=1

[ai(t, x, u, z)− ai(t, x, ũ, z̃)](zi − z̃i)

+[a0(t, x, u, z)− a0(t, x, ũ, z̃)](u− ũ) ≥ −c(f3(t) + |u|γ + |ũ|γ)|u− ũ|2.
(4.12)

Under the condition (S4)′, it follows from (4.7) that the operator A satisfies

⟨A(t, u)−A(t, v), u− v⟩ ≤
[
f3(t) + C∥u∥γδV ∥u∥γ(1−δ)

H + C∥v∥γδV ∥v∥γ(1−δ)
H

]
∥u− v∥2H

(4.13)

with δ = αd
αd+2α−2d . Thus in this case, the local monotonicity condition (H2)

in Section 2 is satisfied, which gives the uniqueness.

Example 4.2 (Convection diffusion equation). The convection–diffusion
equation describes physical phenomena where particles, energy, or other
physical quantities are transferred inside a physical system due to two pro-
cesses: diffusion and convection. And it has significant applications in fluid
dynamics, heat transfer, and mass transfer. The convection diffusion equa-
tion is given by{

du = ∇ · [a(u)∇u+ b(u)]dt, on (0, T ]× Td,

u(0) = u0,
(4.14)

where Td denotes the d-dimensional torus, u : [0, T ] × Td → R, the flux
function b = (b1, · · · , bd) : R → Rd, the diffusion matrix a = (aij)

d
i,j=1 :

Rd → Md×d, here Md×d is the set of all d × d-dim matrices. We assume
that a and b are continuous, b has linear growth, a is bounded and uniformly
positive definite, i.e. there exists constants δ, C > 0 such that for any u ∈ R
and z ∈ Rd,

δ|z|2 ≤ ⟨a(u)z, z⟩ ≤ C|z|2. (4.15)

We would like to point out that under the above conditions, equation
(4.14) fulfills the conditions (S1) (S2) (S3) and (S4) in Example 4.1, but not
(S4)′.

In the following, we will show that equation (4.14) falls into the frame-
work in Section 2.

Set H := L2(Td) and V := W 1,2(Td). Then we have the Gelfand triple
V ⊆ H ⊆ V ∗, and the embedding V ⊆ H is compact. For u, v ∈ V , define
the operator A as

⟨A(u), v⟩ = −
∫
Td

⟨a(u(x))∇u(x) + b(u(x)),∇v(x)⟩dx. (4.16)

35



Under the above conditions on the coefficients a and b, it is easy to see that
conditions (H1), (H3) and (H4) in Section 2 are satisfied, but (H2) does not
hold. However, we will show that the operator A is pseudo-monotone, i.e. if

un ⇀ u weakly in V and lim inf
n→∞

⟨A(un), un − u⟩ ≥ 0, (4.17)

then for any v ∈ V,

lim sup
n→∞

⟨A(un), un − v⟩ ≤ ⟨A(u), u− v⟩. (4.18)

The compact embedding of V ⊆ H implies that if un weakly converges
to u in V , then ∥un − u∥H → 0. Thus we can subtract a subsequence (still
denoted by {un}) such that un(x) → u(x) for a.e. x ∈ Td. Moreover, the
Lipschitz continuity of b implies that ∥b(un)− b(u)∥H → 0. So

lim
n→∞

∫
Td

⟨b(un(x)),∇un(x)−∇u(x)⟩dx = 0. (4.19)

Similarly, by the boundedness and continuity of a, we have

lim
n→∞

∫
Td

⟨a(un(x))∇u(x),∇un(x)−∇u(x)⟩dx = 0. (4.20)

Combining (4.17), (4.19) and (4.20) together yields

− lim sup
n→∞

∫
Td

⟨a(un(x))(∇un(x)−∇u(x)),∇un(x)−∇u(x)⟩dx ≥ 0. (4.21)

Since a is uniformly positive-definite, it follows from the above inequality
that

∥un − u∥V → 0. (4.22)

Therefore, there exists a further subsequence (still denoted by {un}) such
that ∇un(x) → ∇u(x) for a.e. x ∈ Td. Thus, for any v ∈ V ,

lim
n→∞

∫
Td

⟨a(un(x))∇un(x) + b(un(x)),∇un(x)−∇v(x)⟩dx

=

∫
Td

⟨a(u(x))∇u(x) + b(u(x)),∇u(x)−∇v(x)⟩dx. (4.23)

Since the right side is independent of the subsequences, the above limit holds
for the whole sequence un. Hence (4.18) is proved.

For the corresponding stochastic equation associated with (4.14), we as-
sume that the diffusion coefficient is globally Lipschitz inH. Thus, according
to Corollary 2.7, we obtain the existence of probabilistically weak solutions
to the corresponding stochastic equation, and estimate (2.11) holds. The
pathiwise uniqueness of the corresponding stochastic equation can be estab-
lished by an argument of Yamada-Watanabe approximation under additional
assumption that coefficient a and b are Lipschitz, see Theorem 3.1 in [16].
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Remark 4.3. The existence of stochastic convection-diffusion equations was
established in [16] under the additional assumption that a and b are Lips-
chitz. With the approach in this paper, Lipschitz continuity of coefficients
a and b is not needed for the existence of solutions.

Example 4.4 (Cahn-Hilliard equation). The well-known Cahn–Hilliard equa-
tions were initially introduced in [8] to describe phase separation in a binary
alloy. It is a fundamental phase field model in material science. The classical
Cahn–Hilliard equation reads:


∂tu(t) = −∆2u+∆φ(u),

∇u · ν = ∇(∆u) · ν = 0 on ∂O,
u(0) = u0,

(4.24)

where u : [0, T ]×O → R represents a scaled concentration, O is a bounded
domain in Rd with d = 1, 2, 3 and with smooth boundary ∂O, ν is the
outward unit normal vector on ∂O. We assume that the nonlinear term φ
satisfies the following conditions: φ ∈ C1(R,R) and there exist constants
C ≥ 0 and 2 ≤ p ≤ d+4

d such that for any x, y ∈ R, φ′(x) ≥ −C, |φ(x)| ≤
C(1 + |x|p) and

|φ(x)− φ(y)| ≤ C(1 + |x|p−1 + |y|p−1)|x− y|.

Now let H = L2(O) and V = {u ∈ H2 : ∇u · ν = ∇(∆u) · ν = 0 on ∂O}.
Then we have the Gelfand triple V ⊆ H ⊆ V ∗ and the embedding V ⊆ H
is compact. Set

A(u) = −∆2u+∆φ(u). (4.25)

By the condition of φ and the Gagliardo-Nirenberg inequality, conditions
(H1), (H2), (H3) and (H4) in Section 2 can be verified, see Example 5.2.27
in [26]. And condition (H2) reads as

⟨A(u)−A(v), u− v⟩ ≤ − 1

2
∥u− v∥2V + C

(
1 + ∥u∥

d(p−1)
2

V ∥u∥
(4−d)(p−1)

2
H

+ ∥v∥
d(p−1)

2
V ∥v∥

(4−d)(p−1)
2

H

)
∥u− v∥2H . (4.26)

Note that d(p−1)
2 ≤ 2 ⇐⇒ p ≤ d+4

d . In the case of d = 1 and d = 2, the
function φ can be taken to be the typical example φ(x) = x3 − x, which is
the derivative of the double well potential F (x) = 1

4(x
2 − 1)2.

Under the above conditions on φ, by Theorem 2.6 and Theorem 2.8,
we have established the well-posedness the corresponding stochastic Cahn-
Hilliard equation,

du(t) =
[
−∆2u+∆φ(u)

]
dt+B(t, u)dW (t), (4.27)

where W is a cylindrical Wiener process on another separable Hilbert space
U , B is Lipschitz from H to L2(U,H), and the initial value u(0) ∈ H.
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Moreover, by Theorem 3.2 in Section 3, the coefficient B can also depends
on ∆u in the case of d = 1. To the best of our knowledge, these results
are not seen in literature. We refer the reader to [10, 25, 2] and reference
therein.

Example 4.5 (2D Liquid crystal model). The elementary form of the hy-
drodynamics of liquid crystals is a simplified version of the Ericksen–Leslie
system with Ginzburg–Landau approximation, which is established by Lin
an Liu in [20]. This model in two dimensions is given by

∂tu = ∆u− (u · ∇)u−∇p−∇ · (∇n⊗∇n),
∇ · u = 0,

∂tn = ∆n− (u · ∇)n− Φ(n),

u = 0 and ∂n
∂ν = 0 on ∂O,

u(0) = u0, n(0) = n0,

(4.28)

where O is a bounded domain in R2 with smooth boundary ∂O, u : [0, T ]×
O → R2 is the velocity, p : [0, T ]×O → R is the pressure, n : [0, T ]×O → R3

is the director field of liquid crystal molecules, ν is the outward unit normal
vector on ∂O. By the symbol ∇n⊗∇n we mean a 2× 2 matrix with entries
defined by

(∇n⊗∇n)i,j =
3∑

k=1

(
∂ink

)(
∂jnk

)
,

where ∂i denotes the partial derivative with respect to xi for i = 1, 2. We
assume that Φ : R3 → R3 satisfies the following conditions: there exists a
k-th polynomial φ : [0,∞) → R for some k ∈ N such that

Φ(n) = φ(|n|2)n =
( k∑

i=0

ai|n|2i
)
n,

where ai ∈ R for i = 0, 1, · · · , k − 1 and ak > 0.

Next we will verify that the above model falls into the frameworks in
Section 2 and Section 3. Let V = {u ∈ H1(O)2 : ∇ · u = 0, u|∂O = 0}.
Denote by H the closure of V under the L2-norm ∥u∥2H :=

∫
O |u(x)|2dx.

Now set

H := H × [H1(O)3], V := V ×
{
n ∈ H2(O)3 :

∂n

∂ν
= 0
}
, (4.29)

with the norm in H and in V denoted separately by

∥X∥2H := ∥u∥2H + ∥n∥2H1 , ∥X∥2V := ∥u∥2V + ∥n∥2H2

for X = (u, n). Then we have the Gelfand triple V ⊆ H ⊆ V∗ and the
embedding V ⊆ H is compact.

Note that

∇ · (∇n⊗∇n) = 1

2
∇(|∇n|2) +∇n ·∆n. (4.30)
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Let PH : L2(O)2 → H be the usual Helmholtz-Leray projection. And we set

A(X) :=

(
PH [∆u− (u · ∇)u−∇n ·∆n]

∆n− (u · ∇)n− φ(n)

)
. (4.31)

It is known (see e.g. [41]) that

∥PH [∆u− (u · ∇)u]∥2V ∗ ≤ C(1 + ∥u∥2H)∥u∥2V . (4.32)

By (4.30) and (4.7), we have

∥PH(∇n ·∆n)∥2V ∗ ≤ ∥∇n∥4L4(O) ≤ ∥n∥2H1∥n∥2H2 . (4.33)

Obviously,

∥∆n∥L2(O) ≤ ∥n∥H2 . (4.34)

It follows from (4.7) that

∥(u · ∇)n∥2L2(O) ≤ ∥u∥2L4(O)∥∇n∥
2
L4(O) ≤ C∥u∥H∥u∥V ∥n∥H1∥n∥H2 . (4.35)

The condition on Φ implies

∥Φ(n)∥2L2(O) ≤ C∥n∥4k+2
L4k+2(O)

≤ C∥n∥4k+2
H1 . (4.36)

Combining (4.32)-(4.36) together, we obtain

∥A(X)∥2V∗ ≤ C(1 + ∥X∥4k+2
H )∥X∥2V∗ . (4.37)

Thus the operator A : V → V∗ satisfies the condition (H4) in Section 2. By
the integration by parts, we have

V∗⟨A(X), X⟩V =V ∗⟨∆u− (u · ∇)u−∇n ·∆n, u⟩V
+ L2⟨∆n− (u · ∇)n− Φ(n), n⟩H2

≤− ∥u∥2V − ((u · ∇)n,∆n)L2 − ∥∆n∥L2

+ ((u · ∇)n,∆n)L2 − L2⟨Φ(n), n⟩H2

≤− (∥u∥2V + ∥n∥2H2) + C∥n∥2H1 − L2⟨Φ(n), n⟩H2 . (4.38)

The last term on the right hand side of the above inequality can be estimated
as follows

− L2⟨Φ(n), n⟩H2

=−
(
Φ(n), n

)
L2 −

(
∇Φ(n),∇n

)
L2

=−
∫
O
φ(|n|2)|n|2 −

∫
O

3∑
j=1

2∑
i=1

[
φ(|n|2)∂inj + 2φ′(|n|2)

3∑
l=1

njnl∂inl

]
∂inj

=−
∫
O
φ(|n|2)(|n|2 + |∇n|2)−

∫
O
2φ′(|n|2)tr

(
∇n · (n⊗ n) · (∇n)T

)
≤C∥n∥2H1 , (4.39)
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where we have used the fact that φ(z) and φ′(z)z have lower bounds on the
interval [0,∞). Combining (4.38) and (4.39) together gives

V∗⟨A(X), X⟩V ≤ −∥X∥2V + C∥X∥2H. (4.40)

Hence (H3) in Section 2 is satisfied. For X = (u, n) and X̃ = (ũ, ñ) in V ,

V∗⟨A(X)−A(X̃), X − X̃⟩V
=V ∗⟨∆u−∆ũ, u− ũ⟩V
− V ∗⟨(u · ∇)u− (ũ · ∇)ũ, u− ũ⟩V
− V ∗⟨∇n ·∆n−∇ñ ·∆ñ, u− ũ⟩V
+ L2⟨∆n−∆ñ, n− ñ⟩H2

− L2⟨(u · ∇)n− (ũ · ∇)ñ, n− ñ⟩H2

− L2⟨Φ(n)− Φ(ñ), n− ñ⟩H2

=I + II + · · ·V I. (4.41)

It is easy to see that

I = −∥u− ũ∥2V , (4.42)

II ≤ ε∥u− ũ∥2V + Cε∥u∥2V ∥u− ũ∥2H . (4.43)

For terms III and V , we have

III + V =− V ∗⟨∇n ·∆(n− ñ), u− ũ⟩V
− V ∗⟨∇(n− ñ) ·∆ñ, u− ũ⟩V
− L2⟨((u− ũ) · ∇)n, n− ñ⟩H2

− L2⟨(ũ · ∇)(n− ñ), n− ñ⟩H2

=J1 + J2 + J3 + J4. (4.44)

Integration by parts yields

J1 + J3 = 0. (4.45)

By (4.7) we have

|J2| ≤∥∇(n− ñ)∥L4∥∆ñ∥L2∥u− ũ∥L4

≤C∥n− ñ∥
1
2

H2∥n− ñ∥
1
2

H1∥ñ∥H2∥u− ũ∥
1
2
V ∥u− ũ∥

1
2
H

≤ε∥n− ñ∥H2∥u− ũ∥V + Cε∥ñ∥2H2∥n− ñ∥H1∥u− ũ∥H . (4.46)

Similarly, using integration by parts and Young’s inequality, we have

|J4| ≤∥∆(n− ñ)∥L2∥∇(n− ñ)∥L4∥ũ∥L4

≤C∥n− ñ∥
3
2

H2∥n− ñ∥
1
2

H1∥ũ∥
1
2
V ∥ũ∥

1
2
H

≤ε∥n− ñ∥2H2 + Cε∥ũ∥2V ∥ũ∥2H∥n− ñ∥2H1 . (4.47)

Obviously,

IV = −∥∆(n− ñ)∥2L2 = −∥n− ñ∥2H2 + ∥n− ñ∥2H1 . (4.48)
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The term V I can be estimated as follows,

|V I| ≤∥n− ñ∥H2∥Φ(n)− Φ(ñ)∥L2

≤ε∥n− ñ∥2H2 + Cε∥Φ(n)− Φ(ñ)∥2L2

≤ε∥n− ñ∥2H2 + Cε

∫
O
(1 + |n|2k + |ñ|2k)2|n− ñ|2

≤ε∥n− ñ∥2H2 + Cε(1 + ∥n∥4kL4k+2 + ∥ñ∥4kL4k+2)∥n− ñ∥2L4k+2

≤ε∥n− ñ∥2H2 + Cε(1 + ∥n∥4kH1 + ∥ñ∥4kH1)∥n− ñ∥2H1 . (4.49)

Combining (4.41)-(4.49) together and taking sufficiently small ε > 0, we
obtain

V∗⟨A(X)−A(X̃), X − X̃⟩V

≤− 1

2
∥X − X̃∥2V + C(1 + ∥X∥4kH + ∥X̃∥4kH + ∥X̃∥2V∥X̃∥2H)∥X − X̃∥2H.

(4.50)

Therefore, (H2) in Section 2 is satisfied. The hemicontinuity condition (H1)
can be easily verified by the dominated convergence theorem. Since con-
dition (H2)* in Section 3 is also satisfied, this model also falls into the
framework in Section 3.

In [6], the authors considered a stochastic version of system (4.28) with
noise in the equation of u only depending on u, and with linear multiplicative
noise only depending on n in Stratonovich sense in the equation of n. Now
applying Theorem 2.6 and Theorem 2.8 in Section 2, we can establish the
well-posedness of the stochastic 2D liquid crystal equations driven by general
multiplicative noise which can depend both on u and n. Moreover, applying
Theorem 3.2 in Section 3, the noise can also depend on ∇u and ∆u.

Remark 4.6. In system (4.28), if n : O → R and Φ : R → R are scalar
functions, then the corresponding system is the Allen-Cahn-Navier-Stokes
model. This model can be viewed as a phase field model describing the mo-
tion of a mixture of two incompressible viscous fluids. We refer the readers
to [43, 27, 28] and references therein. The Allen-Cahn-Navier-Stokes model
is also closely related to the magneto-hydrodynamic (MHD) equations, that
is the Navier-Stokes equations coupled with the Maxwell equations. In par-
ticular in the case of dimension two and nonlinear term Φ(n) = 0, the
corresponding system is equivalent to the MHD equations, see [42]. Both
the Allen-Cahn-Navier-Stokes model and the MHD equations fall into the
frameworks in Section 2 and Section 3 in our paper, the proof is same as
above.

5 Appendix

In this section we provide a proof of a criterion for the tightness of laws in
the vector space Lp([0, T ], H). The following lemma is the Theorem 5 of
[40].
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Lemma 5.1. Let 1 ≤ p <∞. Let V , H and Y be Banach spaces satisfying
V ⊆ H ⊆ Y . Suppose the embedding V ⊆ H is compact. If Υ is a bounded
subset of Lp([0, T ], V ) satisfying

lim
δ→0+

sup
f∈Υ

∫ T−δ

0
∥f(t+ δ)− f(t)∥pY dt = 0, (5.51)

then Υ is a relatively compact subset of Lp([0, T ], H).

Based on the above lemma, we can establish the following criterion for
the tightness of laws in Lp([0, T ], H).

Lemma 5.2. Let 1 ≤ p <∞. Let V , H and Y be Banach spaces satisfying
V ⊆ H ⊆ Y . Suppose that the embedding V ⊆ H is compact. Let {Xn} be
a sequence of stochastic processes. If

lim
M→∞

sup
n∈N

P
(∫ T

0
∥Xn(t)∥pV dt > M

)
= 0, (5.52)

and for any ϵ > 0,

lim
δ→0+

sup
n∈N

P
(∫ T−δ

0
∥Xn(t+ δ)−Xn(t)∥pY dt > ϵ

)
= 0. (5.53)

Then {Xn} is tight in Lp([0, T ], H).

Proof. Take any ε > 0. From (5.52) it follows that there exists M > 0 such
that

sup
n∈N

P
(∫ T

0
∥Xn(t)∥pV dt > M

)
≤ ε

2
. (5.54)

Set

KM :=

{
f ∈ Lp([0, T ], H) :

∫ T

0
∥f(t)∥pV dt ≤M

}
. (5.55)

From (5.53) it follows that for any k ∈ N, there exists δk > 0 such that

sup
n∈N

P
(∫ T−δk

0
∥Xn(t+ δk)−Xn(t)∥pY dt >

1

k

)
≤ ε

2k+1
. (5.56)

Set

Γk :=

{
f ∈ Lp([0, T ], H) :

∫ T−δk

0
∥f(t+ δk)− f(t)∥pY dt ≤

1

k

}
. (5.57)

By Lemma 5.1,

Υ := KM

⋂ ∞⋂
k=1

Γk (5.58)
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is a relatively compact set in Lp([0, T ], H). (5.54) and (5.56) imply that

sup
n∈N

P (Xn /∈ Υ) ≤ sup
n∈N

P (Xn /∈ KM ) +
∞∑
k=1

sup
n∈N

P (Xn /∈ Γk)

≤ε
2
+

∞∑
k=1

ε

2k+1
≤ ε. (5.59)

Hence {Xn} is tight in Lp([0, T ], H). ■
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