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MULTI-BUBBLE BOURGAIN-WANG SOLUTIONS TO

NONLINEAR SCHRÖDINGER EQUATIONS

MICHAEL RÖCKNER, YIMING SU, AND DENG ZHANG

Abstract. We study a general class of focusing L2-critical nonlinear Schrö-
dinger equations with lower order perturbations, in the possible absence of the
pseudo-conformal symmetry and the conservation law of energy. In dimen-
sions one and two, we construct multi-bubble Bourgain-Wang type blow-up

solutions, which behave like a sum of pseudo-conformal blow-up solutions that
concentrate at K distinct singularities, 1 ≤ K < ∞, and a regular profile.
Moreover, we obtain the uniqueness in the energy class where the convergence
rate is within the order (T − t)4+, for t close to the blow-up time T . These
results in particular apply to the canonical nonlinear Schrödinger equations
and, through the pseudo-conformal transform, yield the existence and con-
ditional uniqueness of non-pure multi-solitons, which behave asymptotically
as a sum of multi-solitons and a dispersive part. Thus, the results provide
new examples of the mass quantization conjecture and the soliton resolution
conjecture. Furthermore, through a Doss-Sussman type transform, we obtain
multi-bubble Bourgain-Wang solutions for stochastic nonlinear Schrödinger
equations, where the driving noise is taken in the sense of controlled rough
path.

1. Introduction and main results

1.1. Introduction. We consider a general class of focusing L2-critical nonlinear
Schrödinger equations with lower order perturbations

i∂tv +Δv + a1 · ∇v + a0v + |v| 4d v = 0(1.1)

on Rd, where d = 1, 2, the coefficients of lower order perturbations are of form

a1(t, x) = 2i

N∑
l=1

∇φl(x)hl(t),(1.2)

a0(t, x) = −
d∑

j=1

(
N∑
l=1

∂jφl(x)hl(t))
2 + i

N∑
l=1

Δφl(x)hl(t),(1.3)

and φl ∈ C∞
b (Rd,R), hl ∈ C(R+;R), 1 ≤ l ≤ N .
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Equation (1.1) is mainly motivated by the following two canonical models:

• Nonlinear Schrödinger equations. For (1.1) without lower order pertur-
bations we have the nonlinear Schrödinger equation (NLS for short), i.e.,

i∂tv +Δv + |v| 4d v = 0.(1.4)

NLS is a canonical equation of major importance in continuum mechanics, plasma
physics and optics [32]. In particular, for the cubic nonlinearity in the critical
dimension two, the phenomenon of mass concentration near collapse gives a rig-
orous basis to the physical concept of “strong collapse” [66]. For more physical
interpretations we refer to [32, 37, 66].

• Stochastic nonlinear Schrödinger equations. Another important model
relating to (1.1) is the stochastic nonlinear Schrödinger equation (SNLS for short)

idX +ΔXdt+ |X| 4dXdt = −iμXdt+ iXdW (t),(1.5)

where W is a Wiener process of form

W (t, x) =

N∑
l=1

iφl(x)Bl(t), x ∈ Rd, t ≥ 0,

{φl} ⊆ C∞
b (Rd,R), {Bl} are standard N -dimensional real valued Brownian motions

on a normal stochastic basis (Ω,F , {Ft},P), and μ = 1
2

∑N
l=1 φ

2
l . The last term

XdW (t) in (1.5) is taken in the sense of controlled rough path (see Definition
1.8). The key relationship is that, through the Doss-Sussman type transformation
v := e−WX, v satisfies equation (1.1) with the functions {hl} being exactly the
Brownian motions {Bl}.

The physical significance of SNLS is well known. One significant model arises
from molecular aggregates with thermal fluctuations, where the multiplicative noise
corresponds to scattering of exciton by phonons, due to thermal vibrations of the
molecules. In particular, for the cubic nonlinearity in dimension two, the noise
effect on the coherence of the ground state solitary solution was studied in [1, 2].
The case of quintic nonlinearity in the critical one dimensional case was studied in
[62]. We also refer to [7] for applications to open quantum systems.

It is known that equation (1.1) is locally well-posed in the space H1, see, e.g.,
[13] for the NLS, and [4, 11, 23] for the SNLS.

The long time behavior of solutions is, however, more delicate. An important
role here is played by the ground state, which is a positive radial solution to the
elliptic equation

ΔQ−Q+Q1+ 4
d = 0.(1.6)

It is known that (see [13, Theorem 8.1.1]) Q is smooth and decays at infinity
exponentially fast, i.e., there exist C, δ > 0 such that for any multi-index |υ| ≤ 3,

(1.7) |∂υ
xQ(x)| ≤ Ce−δ|x|, x ∈ Rd.

More importantly, the mass of the ground state is the threshold of global well-
posedness and blow-up. As a matter of fact, in the NLS case, solutions with subcrit-
ical mass (i.e., ‖v‖L2 < ‖Q‖L2) exist globally and even scatter at infinity [28,68]. In
contrast to that, in the critical mass regime, two important dynamics are exhibited:
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the nondispersive solitary wave

W (t, x) := w− d
2Q(

x− ct

w
)ei(

1
2 c·x−

1
4 |c|

2t+w−2t+ϑ),(1.8)

and the pseudo-conformal blow-up solutions

ST (t, x) = (w(T − t))−
d
2 Q(

x− x∗

w(T − t)
)e

− i
4

|x−x∗|2
T−t + i

w2(T−t)
+iϑ

,(1.9)

where w > 0, c, x∗ ∈ Rd and ϑ ∈ R. Both dynamics are closely related to each
other in the pseudo-conformal space Σ := {u ∈ H1 : xu ∈ L2}, through the pseudo-
conformal transform

ST (t, x) = CT (W )(t, x) :=
1

(T − t)
d
2

W (
1

T − t
,

x

T − t
)e−i |x|2

4(T−t) , t �= T, x∗ = c.

(1.10)

Note that ST blows up at time T , and x∗ is the singularity corresponding to the
velocity c of W . A remarkable result in the seminal paper by Merle [51] is that the
pseudo-conformal blow-up solution is the unique critical mass blow-up solution to
L2-critical NLS, up to symmetries of the equation.

In the small supercritical mass regime, two different kinds of blow-up solutions to
NLS are exhibited. The first one is the Bourgain-Wang solution behaving asymp-
totically as a sum of a singular profile ST and a regular profile z, i.e.,

v(t)− ST (t)− z(t) → 0, as t → T.(1.11)

Note that v blows up at time T with the pseudo-conformal speed

‖∇v(t)‖L2 ∼ (T − t)−1.

This kind of solutions was first constructed in the pioneering work by Bourgain
and Wang [10] in dimensions d = 1, 2. It was then extended by Krieger and Schlag
[43] to prove the existence of a large set of initial data close to the ground state
resulting in pseudo-conformal speed blow-up solutions in dimension d = 1, this set is
an almost codimension one stable manifold in the measurable category. Moreover,
the instability of such solutions was proved in the work by Merle, Raphaël and
Szeftel [57], which shows that Bourgain-Wang solutions lie on the boundary of two
H1 open sets of global scattering solutions and loglog blow-up solutions. We also
would like to refer to [42,63] for the stable manifolds for the supercritical NLS, and

[8] for the center-stable manifold for the Ḣ
1
2 -critical cubic NLS in dimension three.

The other kind of blow-up solutions is of the loglog blow-up rate

‖∇v(t)‖L2 ∼ ((T − t)−1log | log(T − t)|) 1
2 .

Unlike Bourgain-Wang solutions, these solutions are stable under H1 perturbations.
In this respect, we refer to the pioneering work by Perelman [60] and a series of
works of Merle and Raphaël [52–54,56].

In the even larger mass regime, the construction of multi-bubble blow-up solu-
tions was initiated by Merle [50], which behave like a sum of K pseudo-conformal
blow-up solutions, 1 ≤ K < ∞. Through the pseudo-conformal transform, this
also yields the existence of multi-solitons [50]. Multi-bubble blow-up solutions with
loglog speed have been constructed by Fan [33].

The complete characterization of the formation of singularity is still unclear
for general blow-up solutions to L2-critical NLS. In [9], Bourgain raised an open
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problem on the quantization property of blow-up solutions, namely, whether the
concentration of mass is of the form k‖Q‖2L2 , k ∈ Z+. See also [10]. Merle and
Raphaël [55] formulated precisely the mass quantization conjecture. It is expected
that blow-up solutions can be decomposed into a singular part and an L2 residual,
and the singular part expands asymptotically as multiple bubbles, each of which
concentrates the mass no less than ‖Q‖2L2 at the blow-up point.

Moreover, according to the famous soliton resolution conjecture, global solutions
to a nonlinear dispersive equation are expected to decompose at large time as a
sum of solitons plus a scattering remainder. Important progress has been made for
the energy critical wave equations. We refer to [19, 29–31] and references therein.

The soliton resolution conjecture is still open for the NLS, except for the in-
tegrable one dimensional case. A series of (pure) multi-solitons (i.e., solutions
behaving as a sum of solitons without dispersive part) has been constructed for the
NLS, see e.g. [18, 20, 21, 44, 45, 47, 50]. We also refer to [41] for the construction of
two soliton solutions for the subcritical Hartree equation. For the gKdV equations,
we refer to [15,46] for the existence and classification of multi-solitons, and [16,17]
for the construction of solutions behaving as a sum of solitons and of a linear term.

Hence, a natural question to ask is whether non-pure multi-solitons (including a
dispersive part) can be constructed for the NLS, which, to the best of our knowledge,
seems not to have been done in literature. See, e.g., the recent lecture notes of
Cazenave [14].

The two conjectured long time dynamics are indeed the main motivations of the
present work.

Furthermore, in the stochastic case, a remarkable result proved by de Bouard and
Debussche [22, 24] is that stochastic solutions can blow up at any short time with
positive probability in the L2-supercritical case. Several numerical experiments
have been also made to investigate the dynamics of stochastic blow-up solutions,
see, e.g., [25–27,58, 59].

One major challenge in the stochastic case is that, in contrast to NLS, the
classical pseudo-conformal symmetry is lost due to the input of noise. Moreover,
the energy of solutions is no longer conserved, which makes it more difficult to
understand the global behavior in the stochastic L2-supercritical case, see [58, 59]
for the numerical tracking of energy.

Recently, the quantitative construction of critical mass stochastic blow-up so-
lutions to (1.5) is obtained in [64], the proof there relies mainly on the modula-
tion method developed in the work by Raphaël and Szeftel [61] and also on the
rescaling approach in [4–6, 38, 70, 71]. This also yields the threshold of the mass
of the ground state for the global well-posedness and blow-up in the stochastic
case. Later, stochastic blow-up solutions with loglog speed have been constructed
in [34]. Furthermore, multi-bubble blow-up solutions to (1.5), behaving as a sum of
pseudo-conformal blow-up solutions, were constructed and proved to be unique if
the asymptotic behavior is of the order (T − t)3+ [65]. The conditional uniqueness
result has been further used in the very recent work [12] to enlarge the energy class
for the uniqueness of both multi-bubble solutions and multi-solitons, particularly
in the low asymptotical regime with the orders O(T − t)0+ and s−2−, respectively,
where t is close to T and s is large.
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In the present work, we study the Bourgain-Wang type solutions, concentrating
at multiple points, in the large mass regime for both equations (1.4) and (1.5) in a
uniform manner.

More precisely, in both dimensions one and two, we construct multi-bubble
Bourgain-Wang solutions to (1.1), which behave asymptotically as a sum of pseudo-
conformal blow-up solutions and a regular profile, i.e., for t close to T ,

(1.12) ‖v(t)−
K∑

k=1

Sk(t)− z(t)‖L2 + (T − t)‖∇v(t)−∇
K∑

k=1

Sk(t)−∇z(t)‖L2

≤ C(T − t)
1
2 (κ−1),

where z is the regular profile propagating along the flow generated by equation (1.1)
with z(T ) = z∗, {Sk} are the pseudo-conformal blow-up solutions as in (1.9) with
distinct singularities, and the exponent κ (≥ 3) is closely related to the flatness at
singularities of both the spatial functions {φl} and the residue z∗. Moreover, we
prove that the multi-bubble Bourgain-Wang solutions are unique if their asymptot-
ical behavior is within the order (T − t)4+.

This provides new examples of the conjectured mass quantization phenomena
for both the L2-critical NLS and SNLS. Furthermore, in the NLS case, through the
pseudo-conformal transform, the existence and conditional uniqueness of non-pure
multi-solutions are also obtained, which behave asymptotically as a sum of soli-
tons with distinct velocities plus a dispersive part. To the best of our knowledge,
this provides the first examples of non-pure multi-solitons to the L2-critical NLS,
predicted by the soliton resolution conjecture. Let us also mention that the unique-
ness holds in the energy class of solutions with decay rate t−5−, where t is large
enough, which is larger than the class of exponential convergence in which (pure)
multi-solitons naturally lie.

Notations. For any x = (x1, · · · , xd) ∈ Rd and any multi-index υ = (υ1, · · · , υd),
let |υ| =

∑d
j=1 υj , 〈x〉 = (1 + |x|2)1/2, ∂υ

x = ∂υ1
x1

· · · ∂υd
xd
, and 〈∇〉 = (I −Δ)1/2.

We use the standard Sobolev spaces Hs,p(Rd), s ∈ R, 1 ≤ p ≤ ∞. In particular,
Lp := H0,p(Rd) is the space of p-integrable (complex-valued) functions, L2 denotes
the Hilbert space with the inner product 〈v, w〉 =

∫
Rd v(x)w(x)dx, and Hs := Hs,2.

Let Σ denote the pseudo-conformal space, i.e., Σ := {u ∈ H1, xu ∈ L2}. The local
smoothing space is defined by L2(I;Hα

β ) = {u ∈ S ′ :
∫
I

∫
〈x〉2β|〈∇〉αu(t, x)|2dxdt <

∞}, α, β ∈ R. Let C∞
c be the space of all compactly supported smooth functions on

Rd. We also use the notation ġ = d
dtg for any C1 function g on R. For any Hölder

continuous function g ∈ Cα(I), α > 0, I ⊆ R+, let δgst := g(t) − g(s), s, t ∈ I,

and ‖g‖α,I := sups,t∈I,s �=t
|δgst|
|s−t|α . As t → T or t → ∞, f(t) = O(g(t)) means that

|f(t)/g(t)| stays bounded, and f(t) = o(g(t)) means that |f(t)/g(t)| converges to
zero. Throughout this paper, the positive constants C and δ may change from line
to line.

1.2. Formulation of main results. Let K ∈ N+ and {xk}Kk=1 denote distinct
points in Rd. We assume that the spatial functions {φl} in the noise and the
residue z∗ satisfy the following hypotheses:

(H1) Asymptotical flatness : For any multi-index υ �= 0 and 1 ≤ l ≤ N ,

lim
|x|→∞

〈x〉2|∂υ
xφl(x)| = 0.(1.13)
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Flatness at singularities : Let υ∗ ∈ N+. For every 1 ≤ l ≤ N and multi-
index |υ| ≤ υ∗,

∂υ
xφl(xk) = 0, 1 ≤ l ≤ N, 1 ≤ k ≤ K.(1.14)

(H2) Smallness : Let α∗ be a positive (small) constant, m ∈ N+. Let z∗ satisfy

‖z∗‖H2m+2+d ≤ α∗,(1.15)

‖〈x〉z∗‖H1 ≤ α∗.(1.16)

Flatness at singularities : For any multi-index |υ| ≤ 2m,

∂υ
xz

∗(xk) = 0, 1 ≤ k ≤ K.(1.17)

Remark 1.1. On one hand, the asymptotical flatness condition (1.13) ensures the
Strichartz and local smoothing estimates for the Laplacian with lower order per-
turbations, which guarantees the local solvability of equation (1.1), see [4, 49, 70].
On the other hand, the flatness at singularities (1.14) and (1.17) permits us to
construct blow-up solutions, which reflect the local nature of the singularities.

Let us also mention that the presence of noise destroys the energy conservation
law. In order to control the variation of energy, it seems necessary to introduce the
flatness of noise. Heuristically, since the asymptotical blow-up profiles are of NLS
type, it seems natural to have suitable flatness of noise near singularities.

The main result of this paper is formulated in Theorem 1.2.

Theorem 1.2. Consider equation (1.1) with d = 1, 2. Let K ∈ N+, T ∈ R>0,
{ϑk}Kk=1 ⊆ R. Assume that {φl}Nl=1 and z∗ satisfy Hypotheses (H1) and (H2),
respectively, with υ∗ ≥ 5, m ≥ 3 if d = 2 and m ≥ 4 if d = 1. Then, for any
distinct points {xk}Kk=1 ⊆ Rd, w > 0 (resp. any {wk}Kk=1 ⊆ R>0), there exists
ε∗ > 0 small enough such that for any α∗, ε ∈ (0, ε∗) and for any {wk}Kk=1 ⊆ R>0

with |wk − w| ≤ ε, 1 ≤ k ≤ K (resp. any {xk}Kk=1 ⊆ Rd with |xk − xj | ≥ ε−1,
j �= k), the following hold:

(i) Existence. There exists a solution v to (1.1) satisfying that for t close to T ,

‖v(t)−
K∑

k=1

Sk(t)− z(t)‖L2 ≤ C(T − t)
1
2 (κ−1),(1.18)

‖v(t)−
K∑

k=1

Sk(t)− z(t)‖Σ ≤ C(T − t)
1
2 (κ−3),(1.19)

where κ := (m+ d
2 − 1) ∧ (υ∗ − 2), C > 0, {Sk} are the pseudo-conformal blow-up

solutions

Sk(t, x) = (wk(T − t))−
d
2 Q(

x− xk

wk(T − t)
)e

− i
4

|x−xk|2
T−t + i

w2
k
(T−t)

+iϑk

,(1.20)

and z is the unique solution of the equation

(1.21)

{
i∂tz +Δz + a1 · ∇z + a0z + |z| 4d z = 0,

z(T ) = z∗,

where the coefficients a1, a0 are given by (1.2) and (1.3), respectively.
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(ii) Conditional uniqueness. Assume in addition that m ≥ 10, υ∗ ≥ 12. Then,
for any small ζ > 0, there exists a unique solution v to (1.1) satisfying that for t
close to T ,

(1.22) ‖v(t)−
K∑

k=1

Sk(t)− z(t)‖L2 + (T − t)‖∇v(t)−∇
K∑

k=1

Sk(t)−∇z(t)‖L2

≤ C(T − t)4+ζ .

Remark 1.3.

(i) Theorem 1.2 mainly treats two cases of singularities {xk} and frequencies
{wk}:

Case (I). {xk}Kk=1 are arbitrary distinct points in Rd, and {wk}Kk=1(⊆ R>0) satisfy
that for some w > 0, |wk − w| ≤ ε for every 1 ≤ k ≤ K.

Case (II). {wk}Kk=1 are arbitrary points in R>0, and {xk}Kk=1(⊆ Rd) satisfy that
|xj − xk| ≥ ε−1 for any 1 ≤ j �= k ≤ K.

Both Cases (I) and (II) correspond to the multi-bubble nature. Roughly speak-
ing, Cases (I) and (II) mean certain decoupling between the profiles. In particular,
Case (I) allows the arbitrariness of singularities when the frequencies are the same.
In the special single bubble case, both the singularity and the frequency can be arbi-
trary. Unlike in Case (II), the arbitrariness of singularities in Case (I) is mainly due
to the conservation law of mass, which gives a rapid exponential decay of the sum
of the localized masses. Case (II) is technically a bit easier since the singularities
are far away from each other.

(ii) The decay order in (1.18) and (1.19) is closely related to the flatness of {φl}
and z∗ at the singularities. For κ ≥ 4, the asymptotics hold in the more regular
H

3
2 space.
(iii) It is important that the regular profile z propagates along the flow generated

by equation (1.1). This fact permits us to control the localized mass and energy,
particularly in the absence of the conservation law of energy, and to gain one more
smallness of the remainder to fulfill the bootstrap arguments in the construction.
This is different from the pure multi-bubble case in [65] and the NLS case in [57].
See also Theorem 3.1, Lemma 3.2 and Remark 3.3 for more details. The solvability
of equation (1.21) can be guaranteed by the smallness of z∗ in the Sobolev space
and the Strichartz and local smoothing estimates for the Laplacian with lower order
perturbations (see, e.g., [3, 4, 49, 70]).

(iv) The conditional uniqueness reflects certain rigidity of the flow around multi-
bubble pseudo-conformal blow-up solutions and the regular profile. It was first
proved by Merle, Raphaël and Szeftel [57] in the single bubble case (i.e., K = 1)
to ensure the continuity of the one-parameter curve in the instability result [57].
See also [40] for Chern-Simons-Schrödinger equations and [65] for the SNLS case.
It would be very interesting to prove the uniqueness in the low asymptotic regime,
e.g. (T − t)0+, as in the very recent work [12]. The main challenge here lies in the
linear terms of the remainder in the control of localized mass and energy, which
destroy the upgradation procedure in [12].

The main applications to the NLS and SNLS cases are presented below.
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Application 1: The NLS case. One main outcome of Theorem 1.2 is the follow-
ing theorem concerning multi-bubble Bourgain-Wang solutions to L2-critical NLS.

Theorem 1.4 (Multi-bubble Bourgain-Wang solutions to NLS). Consider equation
(1.4) with d = 1, 2. Let K ∈ N+, T ∈ R>0, {ϑk}Kk=1 ⊆ R. Assume that z∗ ∈
H2m+2+d satisfying Hypothesis (H2) with m ≥ 3 if d = 2 and m ≥ 4 if d = 1.

Then, for any distinct points {xk}Kk=1 ⊆ Rd, w > 0 (resp. any {wk}Kk=1 ⊆ R>0),
there exists ε∗ > 0 small enough such that for any α∗, ε ∈ (0, ε∗) and for any
{wk}Kk=1 ⊆ R>0 with |wk − w| ≤ ε, 1 ≤ k ≤ K (resp. any {xk}Kk=1 ⊆ Rd with
|xk −xj | ≥ ε−1, j �= k), there exists a solution v to (1.4) satisfying the asymptotics
(1.18) and (1.19), where the regular profile z is the unique solution of equation

(1.23)

{
i∂tz +Δz + |z| 4d z = 0,

z(T ) = z∗.

Moreover, if in addition m ≥ 10, then for any arbitrarily small ζ > 0, there exists
a unique solution to (1.4) satisfying the asymptotic (1.22).

Remark 1.5. Theorem 1.4 provides new examples for the conjectured mass quan-
tization in [9,55]. Actually, by virtue of the asymptotical behavior (1.18), we have
that for t → T ,

|v(t)|2 ⇀

K∑
k=1

‖Q‖2L2δxk
+ |z∗|2 and v(t) → z∗ in L2(Rd −

K⋃
k=1

B(xk, R))

for any R > 0. Hence, the solutions concentrate the mass ‖Q‖2L2 at each singularity
and the remaining part converges to a regular residue z∗.

The next result is concerned with the non-pure multi-solitons to L2-critical NLS,
thanks to the pseudo-conformal transform which connects blow-up solutions and
solitons.

Theorem 1.6 (Non-pure multi-solitons to NLS). Consider equation (1.4) with
d = 1, 2. Let K ∈ N+, {ϑk}Kk=1 ⊆ R. Assume that z∗ ∈ H2m+2+d satisfying
Hypothesis (H2) with m ≥ 6.

Then, for any distinct speeds {ck}Kk=1 ⊆ Rd, w > 0 (resp. any {wk}Kk=1 ⊆ R>0),
there exists ε∗ > 0 small enough such that for any α∗, ε ∈ (0, ε∗) and for any
{wk}Kk=1 ⊆ R>0 with |wk − w| ≤ ε, 1 ≤ k ≤ K (resp. any {ck}Kk=1 ⊆ Rd with
|cj − ck| ≥ ε−1, j �= k), the following hold:

(i) Existence. There exists a solution u to (1.4) satisfying

‖u(t)−
K∑

k=1

Wk(t)− z̃(t)‖Σ ≤ Ct−
1
2κ+

5
2 , for t large enough,(1.24)

where κ = m+ d
2 − 1, C > 0, {Wk} are the solitary waves to (1.4) of form

Wk(t, x) = w
− d

2

k Q(
x− ckt

wk
)ei(

1
2 ck·x−

1
4 |ck|

2t+w−2
k t+ϑk),(1.25)

and z̃ corresponds to the regular part z through the inverse of the pseudo-conformal
transform:

z̃(t, x) = C−1
T z(t, x) = t−

d
2 z(T − 1

t
,
x

t
)ei

|x|2
4t .(1.26)
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(ii) Conditional uniqueness. If in addition m ≥ 16, then for any arbitrarily
small ζ > 0, there exists a unique non-pure multi-soliton u to (1.4) satisfying

‖u(t)−
K∑

k=1

Wk(t)− z̃(t)‖Σ ≤ Ct−5−ζ , for t large enough.(1.27)

Remark 1.7.

(i) It is known [28] that in the subcritical mass regime ‖z∗‖L2 < ‖Q‖L2 , the so-
lution z to (1.23) scatters both forward and backward in time, i.e., ‖z‖

L2+ 4
d (R×Rd)

<

∞. Since the pseudo-conformal transform leaves the L2-critical NLS and the
L2+ 4

d (R × Rd)-norm invariant, z̃ also scatters both forward and backward in time
with small data ‖z∗‖L2 ≤ α∗ << 1. Hence, in view of the asymptotics (1.24), the
constructed solution behaves as a sum of solitons plus a dispersive part. In partic-
ular, Theorem 1.6 provides new examples of non-pure multi-solitons to L2-critical
NLS, predicted by the soliton resolution conjecture.

(ii) It would be interesting to see that the uniqueness of non-pure multi-solitons
holds in the energy class of solutions with decay rate t−5−, which is much larger
than the class of exponential convergence in which multi-solitons naturally lie (see,
e.g., [44,45]). We also refer to [12,18] for this kind of uniqueness in the case of pure
multi-solitons to the L2-critical NLS. It remains still open to prove the uniqueness
or classification of even pure multi-solitons for the NLS, as done for the gKdV
equations in [15, 46].

(iii) The relationship between the exponent m and the decay orders in Theorems
1.4 and 1.6 can be seen from the following estimates: for v := CTu,

‖u(t)‖Σ ≤ Ct‖v(T − 1

t
)‖Σ, ‖v(t)‖Σ ≤ C

T − t
‖u( 1

T − t
)‖Σ.

Application 2: The SNLS case. Another important outcome of Theorem 1.2 is
in stochastic case. Let us present the precise definition of solutions to equation (1.5)
in the controlled rough path sense. For more details of the theory of (controlled)
rough paths, we refer the interested readers to the monograph [35] and [36].

Definition 1.8. We say that X is a solution to (1.5) on [0, τ∗), where τ∗ ∈ (0,∞]
is a random variable, if P-a.s. for any ϕ ∈ C∞

c , t �→ 〈X(t), ϕ〉 is continuous on
[0, τ∗) and for any 0 < s < t < τ∗

〈X(t)−X(s), ϕ〉 −
∫ t

s

〈iX,Δϕ〉+ 〈i|X| 4dX,ϕ〉 − 〈μX,ϕ〉dr

=
N∑

k=1

∫ t

s

〈iφkX,ϕ〉dBk(r).

Here, the integral
∫ t

s
〈iφkX,ϕ〉dBk(r) is taken in the sense of controlled rough paths

with respect to the rough paths (B,B), where B = (Bjk), Bjk,st :=
∫ t

s
δBj,srdBk(r)

with the integration taken in the sense of Itô and δBj,st = Bj(t)−Bj(s). That is,
〈iφkX,ϕ〉 ∈ Cα([s, t]),

δ(〈iφkX,ϕ〉)st = −
N∑
j=1

〈φjφkX(s), ϕ〉δBj,st + δRk,st,(1.28)

and ‖〈φjφkX,ϕ〉‖α,[s,t] < ∞, ‖Rk‖2α,[s,t] < ∞, where 1/3 < α < 1/2.
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The important fact is that, via the Doss-Sussman type transform v = e−WX, the
H1 solvability of equations (1.1) and (1.5) is equivalent, see Theorem 2.10 in [64].
Thus, by virtue of Theorem 1.2, we obtain the following result for the L2-critical
SNLS.

Theorem 1.9 (Multi-bubble Bourgain-Wang solutions to SNLS). Consider (1.5)
with d = 1, 2. Let K ∈ N+, {ϑk}Kk=1 ⊆ R. Assume that {φl}Nl=1 and z∗ satisfy
Hypotheses (H1) and (H2), respectively, with υ∗ ≥ 5, m ≥ 3 if d = 2 and m ≥ 4 if
d = 1.

Then, for P-a.e ω ∈ Ω and for any distinct points {xk}Kk=1 ⊆ Rd, w > 0 (resp.
any {wk}Kk=1 ⊆ R>0), there exists ε∗(ω) > 0 small enough such that for any α∗, ε ∈
(0, ε∗) and any {wk}Kk=1 ⊆ R>0 with |wk−w| ≤ ε, 1 ≤ k ≤ K (resp. any {xk}Kk=1 ⊆
Rd with |xk − xj | ≥ ε−1, j �= k), the following holds:

There exists τ∗(ω) small enough such that for any T ∈ (0, τ∗(ω)), there exists a
solution X to (1.5) satisfying for t close to T ,

‖e−W (t,ω)X(t, ω)−
K∑

k=1

Sk(t)− z(t)‖L2 ≤ C(T − t)
1
2 (κ−1),(1.29)

‖e−W (t,ω)X(t, ω)−
K∑

k=1

Sk(t)− z(t)‖Σ ≤ C(T − t)
1
2 (κ−3),(1.30)

where κ := (m+ d
2 − 1) ∧ (υ∗ − 2), C > 0, {Sk} are the pseudo-conformal blow-up

solutions as in (1.20), and z solves equation (1.21).
Moreover, if in addition m ≥ 10 and υ∗ ≥ 12, then for any arbitrarily small

ζ > 0 there exists a unique solution X to (1.5) such that

‖e−W (t,ω)X(t, ω)−
K∑

k=1

Sk(t)− z(t)‖Σ ≤ C(T − t)4+ζ , for t close to T.(1.31)

Remark 1.10. The blow-up time T ∈ (0, τ∗) is chosen to be sufficiently small in
Theorem 1.9 because the Brownian motions start moving at time zero.

Sketch of proof. The strategy of proof relies mainly on the modulation method
developed in the works [57, 61] and on the multi-bubble analysis in [12, 50, 65].

The modulation method in [61] is very robust to handle the critical mass blow-
up even in the absence of pseudo-conformal symmetry. It in particular enables us
to treat equation (1.1) with lower order perturbations (or the stochastic equation
(1.5)). Moreover, as exhibited in [57], it also permits us to construct Bourgain-Wang
solutions as the limit of both the scattering and loglog blow-up solutions, rather
than by the fixed point arguments in [10]. This inspires us to construct multi-
bubble Bourgain-Wang solutions by using compactness arguments in the modula-
tion framework, involving the backward integration from the singularity.

More precisely, we first decompose the approximating solution into three profiles

v(t, x) = U(t, x) + z(t, x) +R(t, x),(1.32)

where U, z,R are the blow-up profile, the regular profile and the remainder, respec-
tively, which satisfy suitable orthogonality conditions corresponding to the gener-
alized null space of the linearized operators around the ground state. See Theorem
2.1 for the detailed statements.
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Then, the localization analysis in [12, 65] and flatness conditions permit us to
reduce the analysis to an almost critical mass regime, in which more dynamical tools
developed by [61] can be employed. One crucial ingredient here is the monotone
functional particularly constructed in the multi-bubble case, which enables us to
derive a uniform backwards control of the remainder. Hence, the desired blow-up
solutions can be constructed by using compactness arguments as in [61, 65].

Let us mention that different new types of interactions emerge in the present
non-pure multi-bubble case, which are different from the single bubble case [61]
and the pure case [65]. The subtlety can be seen as follows:

(i) Interactions between different blow-up profiles Uj and Uk, j �= k. This kind

of interaction is of exponentially small order (i.e., e−
δ

T−t ), due to the rapid
decay of the ground state and the distinction of singularities. It was treated
in the pioneering work by Merle [50] to the L2-critical NLS. See also [65]
for the recent treatments in the stochastic case.

(ii) Interactions between different localized remainders Rj and Rk, j �= k. Un-
like the single bubble case in [61], this kind of interactions arises especially
in the multi-bubble case. The remainders are of low polynomial type de-
cay orders, due to the little knowledge about remainders in the geometrical
decomposition. Control of these interactions requires the construction of a
new generalized energy functional in [65]. Extra cancellations and decays
have to be explored from the related localization and cut-off functions, e.g.,
to derive the monotonicity of the generalized energy and the coercivity of
energy [65].

(iii) Interactions between the blow-up profile U and the remainder R. The
typical interaction of this kind is the localized mass Mk defined in (3.1). It
creates no difficulty in the single bubble case [61], as it is of second order
O(‖R‖2L2) thanks to the conservation law of mass. However, in the multi-
bubble case, this property fails for each localized mass. Thus more delicate
analysis has to be performed to gain enough temporal regularity [12, 65].

(iv) Interactions between the remainder R and the regular profile z. This kind
of interactions appears in the non-pure case, which does not emerge in the
pure case [65]. It is acceptable in the construction procedure, as it is at
least of the order O(‖R‖L2), which suffices for the bootstrap arguments.

(v) Interactions between the blow-up profile U and the regular profile z. These
interactions emerge also in the non-pure case, not in the previous pure
case [65]. They are treated by using the flatness condition (1.17). It is
not difficult in the NLS case, as one may use Taylor’s expansion and dif-
ferentiate equation (1.4) enough times to get high temporal and spatial
regularity [10, 57]. However, this argument is not applicable in the SNLS
case, since the coefficients a1, a0 contain the rough paths of Brownian mo-

tions of merely temporal regularity C
1
2−
t . The key observation here is that,

when interacting with the blow-up profile U , the spatial size |x − xk| is
comparable to the temporal size T − t. This comparability between space
and time permits us to gain high temporal regularity from the spatial reg-
ularity of the residue z∗, and leads to an inductive expansion of solutions
for which the continuity of coefficients suffices.

Another major difficulty is the failure of the conservation law of energy for the
solutions to (1.1). Actually, unlike in the radial case in [57], two new modulation
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parameters αk and βk need to be introduced in the multi-bubble case, due to the
distinct singularities and the non-radialness of solutions. The control of these new
parameters requires certain coercivity type control of energy, which however is no
longer conserved. It might be tempting to use the variation control of energy as in
[64, 65]. However, in the Bourgain-Wang regime under consideration, extra terms
such as ‖z‖H1 appear in the evolution formula of energy, which, unfortunately,
give no temporal regularity and thus are far from sufficient to close the bootstrap
arguments in the construction.

Unlike in [64,65], the key point here is that the temporal regularity can be gained
after subtracting the energy evolutions of the solutions and the regular profile. This
leads us to introduce the evolution equation (1.21) for the regular profile, rather
than the usual NLS. Similar structural consideration will also be used in the controls
of localized mass and of the remainder in the pseudo-conformal space.

The remainder of this paper is organized as follows. Section 2 contains the
geometrical decomposition and preliminary modulation estimates. Section 3 is
devoted to the controls of the localized mass, energy, and to the curial monotonicity
of the generalized energy. Then, in Section 4 we mainly construct the multi-bubble
Bourgain-Wang solutions to (1.1). The conditional uniqueness result in Theorem
1.2 is then proved in Section 5. At last, some technical estimates are proved in
Appendix for the convenience of the readers.

2. Geometrical decomposition

2.1. Geometrical decomposition. For each 1 ≤ k ≤ K, define the modulation
parameters by Pk := (λk, αk, βk, γk, θk) ∈ Y := R × Rd × Rd × R × R, where
λk, γk, θk ∈ R, αk, βk ∈ Rd. Set P := (P1, · · · ,PK) ∈ YK . Given any K distinct
blow-up points {xk}, set Pk := |λk| + |αk − xk| + |βk| + |γk|, 1 ≤ k ≤ K, and

P :=
∑K

k=1 Pk. Let S(t, x) =
∑K

k=1 Sk(t, x), where {Sk} are given by (1.20).

Theorem 2.1 (Geometrical decomposition). Given T ∈ R>0. Assume that v ∈
C([t̃, T∗];H

1) solves (1.1) and v(T∗) = S(T∗) + z(T∗), where T∗ < T . Then, for α∗

sufficiently small and for T∗ close to T , there exist t∗ < T∗ and unique modulation
parameters P ∈ C1((t∗, T∗);Y

K), such that u admits the geometrical decomposition

v(t, x) = U(t, x) + z(t, x) +R(t, x), t ∈ [t∗, T∗], x ∈ Rd,(2.1)

where the main blow-up profile U(t, x) =
∑K

k=1 Uk(t, x), with

Uk(t, x) = λk(t)
− d

2 Qk(t,
x− αk(t)

λk(t)
)eiθk(t), Qk(t, y) = Q(y)ei(βk(t)·y− 1

4γk(t)|y|2),

(2.2)

the regular profile z solves equation (1.21), R(T∗) = 0, and the modulation param-
eters satisfy

Pk(T∗) = (wk(T − T∗), xk, 0, w
2
k(T − T∗), w

−2
k (T − T∗)

−1 + ϑk), 1 ≤ k ≤ K.

(2.3)
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Moreover, for each 1 ≤ k ≤ K, the following orthogonality conditions hold on
[t∗, T∗]:
(2.4)

Re

∫
(x− αk)Uk(t)R(t)dx = 0, Re

∫
|x− αk|2Uk(t)R(t)dx = 0,

Im

∫
∇Uk(t)R(t)dx = 0, Im

∫
ΛkUk(t)R(t)dx = 0, Im

∫
�k(t)R(t)dx = 0,

where Λk = d
2Id + (x− αk) · ∇, ρ is given by (6.2). and

�k(t, x) = λ(t)
− d

2

k ρk(t,
x− αk(t)

λk(t)
)eiθk(t) with ρk(t, y) := ρ(y)i(βk(t)·y− 1

4γk(t)|y|2).

(2.5)

Remark 2.2. Let us mention that the modulation in (2.2) is based on the ground
state Q rather than a modulated one PP in [61]. The latter permits us to treat a
sharp flatness condition of an inhomogeneous nonlinearity. In the present case, due
to the absence of the energy conservation law caused by noise, it seems necessary
to introduce the flatness of noise (1.14) with υ∗ ≥ 4, by which the original profile Q
is sufficient to carry out bootstrap arguments. It would be very interesting to lower
the flatness order (say, to a sharp order as in [61]) by using modulated profiles.

Theorem 2.1 is mainly based on the implicit function theorem. The single bubble
case is proved in [61], while the multi-bubble case with z∗ = 0 is proved in [65].
Since the smallness condition of z still keeps the non-degeneracy of the determinant
of Jacobian matrix, the arguments in [61,65] are also applicable here. For simplicity,
the proof is omitted.

2.2. Modulation equations. Let ġ := d
dtg for any C1 function g. For each 1 ≤

k ≤ K, define the vector of modulation equations by

Modk := |λkλ̇k + γk|+ |λ2
kγ̇k + γ2

k|+ |λkα̇k − 2βk|(2.6)

+ |λ2
kβ̇k + γkβk|+ |λ2

kθ̇k − 1− |βk|2|.

Set Mod :=
∑K

k=1 Modk. The modulation equations mainly characterize the dy-
namics of geometrical parameters. The main estimate is contained in Theorem
2.3.

Theorem 2.3 (Control of modulation equations). Assume that u admits the ge-
ometrical decomposition (2.1) on [t∗, T∗] ⊆ [0, T ) with the modulation parameters
P = (λ, α, β, γ, θ) ∈ YK . Assume additionally that, for t ∈ [t∗, T∗], 1 ≤ k ≤ K,
C1(T − t) ≤ λk(t) ≤ C2(T − t) for some C1, C2 > 0. Then, for t∗ close to T , there
exists C > 0 such that for any t ∈ [t∗, T∗],

Mod ≤ C(
K∑

k=1

|Mk|+ P 2D +D2 + α∗(T − t)m+1+ d
2 + P υ∗+1),(2.7)

where υ∗ is the index of flatness in (1.14), Mk is the localized mass

Mk = 2Re〈Rk, Uk〉+
∫

|R|2Φkdx,(2.8)

and D is the important quantity to measure the size of remainder, defined by

D := ‖R‖L2 + (T − t)‖∇R‖L2 .(2.9)
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Moreover, we have the improved estimate

|λkλ̇k + γk| ≤C(P 2D +D2 + α∗(T − t)m+1+ d
2 + P υ∗+1).(2.10)

Remark 2.4. By Lemma 4.3, we shall see that estimate (2.10) gains one more
fact T − t than (2.7), which is important in the derivation of the monotonicity of
generalized energy I .

The proof of Theorem 2.3 is postponed to the Appendix for the simplicity of
exposition.

2.3. Estimates of profiles. We collect in this subsection the estimates of three
profiles in the above geometrical decomposition (2.1), which will be frequently used
in the squeal.

The blow-up profile U . Let us first see that, by the explicit formula (2.2), Uk

satisfies the equation

i∂tUk+ΔUk + |Uk|
4
dUk = ψk =

eiθ

λ
2+ d

2

k

Ψk(t,
x− αk

λk
),(2.11)

where 1 ≤ k ≤ K, and

Ψk =− (λ2
kθ̇k − 1− |βk|2)Qk − (λ2

kβ̇k + γkβk) · yQk +
1

4
(λ2

kγ̇k + γ2
k)|y|2Qk

− i(λkα̇k − 2βk) · ∇Qk − i(λkλ̇k + γk)ΛQk.(2.12)

Lemma 2.5. Suppose that P = O(1) and λk ≥ C(T − t), C > 0. Then, for any
p ≥ 2, there exists C > 0 such that for all t ∈ [t∗, T∗], 1 ≤ k ≤ K,

‖U(t)‖pLp ≤ C(T − t)−d( p
2−1).(2.13)

Proof. Estimate (2.13) follows from the Gagliardo-Nirenberg inequality that for any
2 ≤ p < ∞,

‖g‖Lp ≤ C‖g‖1−d( 1
2−

1
p )

L2 ‖∇g‖d(
1
2−

1
p )

L2 , ∀g ∈ H1,(2.14)

and ‖Uk(t)‖L2 = ‖Q‖L2 , ‖∇Uk(t)‖L2 = λ−1
k ‖∇Qk‖L2 ≤ C(T − t)−1. �

Because the blow-up profile Uk is almost localized around x−αk

λk
and the singu-

larities are separated from each other, the interactions between different blow-up
profiles are exponentially small. Lemma 2.6 is a slight modification of [65, Lemma
3.1].

Lemma 2.6 (Interactions between blow-up profiles). Let 0 < t∗ < T∗ < ∞. For
1 ≤ k ≤ K, set

Gk(t, x) := λ
− d

2

k gk(t,
x− αk

λk
)eiθk , with gk(t, y) := g(y)ei(βk(t)·y− 1

4γk(t)|y|2),

(2.15)

where g ∈ C2
b (R

d) decays exponentially fast at infinity |∂υg(y)| ≤ Ce−δ|y|, with
C, δ > 0, |υ| ≤ 2. Assume Pk := (λk, αk, βk, γk, θk) ∈ C([t∗, T∗];Y) satisfies that
for t ∈ [t∗, T∗],

1

2
≤ λk(t)

wk(T − t)
≤ 2, |αk(t)− xk| ≤ min

j �=k
{ 1

12
|xj − xk|} ∧

1

2
, |βk(t)|+ |γk(t)| ≤ 1,

(2.16)
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and

(T − t∗)(1 + max
1≤k≤K

|xk|) ≤ 1.(2.17)

Then, there exist C, δ > 0 such that for any 1 ≤ k �= l ≤ K, m ∈ N and multi-index
υ with |υ| ≤ 2,∫

Rd

|x− αl|n|∂υGl(t)||x− αk|m|Gk(t)|dx ≤ Ce−
δ

T−t , t ∈ [t∗, T∗].(2.18)

Moreover, let Φk be defined in (2.51). Then, for any h ∈ L1 or L2, 1 ≤ k �= l ≤ K,
m,n ∈ N and multi-index υ with |υ| ≤ 2,

(2.19)

∫
Rd

|x− αl|n|∂υGl(t)||x− αk|m|h|Φkdx

≤ Ce−
δ

T−t min{‖h‖L1 , ‖h‖L2}, t ∈ [t∗, T∗].

In the sequel, we take t and T ∗ close to T such that (2.16) and (2.17) hold. In
particular, λk is comparable with T − t, i.e., 1

2wk(T − t) ≤ λk(t) ≤ 2wk(T − t).
Hence, Lemma 2.6 is applicable.

The regular profile z. The main estimates of regular profile are contained in
Lemma 2.7.

Lemma 2.7. Let z∗ satisfy Hypothesis (H2). Let z be the corresponding solution
to equation (1.21). For every 1 ≤ k ≤ K, define the renormalized variables εz,k by

z(t, x) = λ
− d

2

k εz,k(t,
x− αk

λk
)eiθk .(2.20)

Then, for α∗ = α∗(T,m) sufficiently small, the following estimates hold:

(i) (Smallness.) For t close to T ,

‖z‖L∞(t,T ;H2m+d+2) ≤ CT,mα∗,(2.21)

‖∂tz‖C([t,T ];L2) ≤ CTα
∗.(2.22)

In particular,

‖εz,k‖L2 ≤ Cα∗, ‖∇εz,k‖L2 ≤ CTα
∗(T − t).(2.23)

If in addition xz ∈ H1, then for t close to T ,

‖xz‖L∞(t,T ;H1) ≤ CTα
∗.(2.24)

(ii) (Interaction between the profiles U and z.) If in addition P (t) = O(T − t)
and |αk −xk| < 1

2 for t close to T , then for any δ > 0, there exists CT,m,δ > 0 such
that ∑

|υ|≤2

‖e−δ|y|∂υ
y εz,k‖L∞ ≤ CT,m,δα

∗(T − t)m+1+ d
2 .(2.25)

Remark 2.8. Note that by the exponential decay (1.7) of ground state,∫
Uk(t, x)z(t, x)dx =

∫
Qk(y)εz,k(t, y)dy ≤ C‖e−δ|y|εz,k‖L∞ .

Hence, estimate (2.25) controls the interactions between the blow-up profile and
the regular profile. As explained in Section 1, this estimate in the NLS case follows
from Taylor’s expansion of z and differentiating equation (1.4) enough times to
get high temporal orders. For more general equation (1.1), including particularly
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the SNLS (1.5) where the coefficients a1, a0 are only C
1
2−
t -regular in time, we shall

use a different inductive expansion of solutions and the comparability between the
spatial size |x − αk| and the temporal size T − t, due to the well localization of
blow-up profile Uk.

Proof of Lemma 2.7.

(i) For simplicity, we set p = 2 + 4
d , p′ = 2d+4

d+4 . Applying the derivative

〈∇〉2m+d+2 to both sides of equation (1.21) we have

i∂t〈∇〉2m+d+2z + (Δ+ a1 · ∇+ a0)〈∇〉2m+d+2z(2.26)

+ [〈∇〉2m+d+2, a1 · ∇+ a0]z + 〈∇〉2m+d+2(|z| 4d z)
= 0,

with 〈∇〉2m+d+2z(T ) = 〈∇〉2m+d+2z∗, where [〈∇〉2m+d+2, a1 ·∇+a0] is the commu-
tator 〈∇〉2m+d+2(a1 · ∇+ a0)− (a1 · ∇+ a0)〈∇〉2m+d+2. Then using the Strichartz
and local smoothing estimates (see [70, Theorem 2.11]) we have

‖z‖L∞(t,T ;H2m+d+2) ≤ CT (‖z∗‖H2m+d+2 + ‖[〈∇〉2m+d+2, a1 · ∇+ a0]z‖
L2(t,T ;H

− 1
2

1 )

(2.27)

+ ‖〈∇〉2m+d+2(|z| 4d z)‖|Lp′ (t,T ;Lp′ ))

≤ CT (α
∗ + ‖z‖

L2(t,T ;H
2m+d+3

2
−1 )

+ ‖z‖1+
4
d

L∞(t,T ;H2m+d+2)
).

Then, using the interpolation (see [70, Lemma 3.6])

‖z‖
H

2m+d+ 3
2

−1

≤ Cδ
1
2 ‖z‖H2m+d+2

−1
+ Cδ−(2m+d+ 3

2 )‖z‖L2(2.28)

≤ Cδ
1
2 ‖z‖H2m+d+2 + Cδ−(2m+d+ 3

2 )α∗,

where the last step is due to 〈x〉−1 ≤ 1 and the mass conservation ‖z‖L2 = ‖z∗‖L2 ≤
α∗, we lead to

‖z‖L∞(t,T ;H2m+d+2) ≤ CT ((1 + T
1
2 δ−(2m+d+ 3

2 ))α∗ + T
1
2 δ

1
2 ‖z‖L∞(t,T ;H2m+d+2)

(2.29)

+ ‖z‖1+
4
d

L∞(t,T ;H2m+d+2)
).

Here and in the sequel, the constant CT may change from line to line. Taking δ
small enough such that CTT

1
2 δ

1
2 < 1/2 we obtain

‖z‖L∞(t,T ;H2m+d+2) ≤CT,m(α∗ + ‖z‖1+
4
d

L∞(t,T ;H2m+d+2)
).(2.30)

Hence, taking α∗ small enough we obtain (2.21). Estimate (2.22) then follows
from (2.21) and equation (1.21), and estimates in (2.23) follow directly from the
identities:

εz,k(t, y) = λ
d
2

k z(t, λky + αk)e
−iθk , ∇εz,k(t, y) = λ

d
2+1

k ∇z(t, λky + αk)e
−iθk .

(2.31)

It remains to prove (2.24). For this purpose, we derive from (1.21) that, for every
1 ≤ j ≤ d,

i∂t(xjz) + Δ(xjz) + a1 · ∇(xjz) + a0(xjz)− 2∂jz − a1,jz + xjf(z) = 0,(2.32)
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and xjz(T ) = xjz
∗, a1,j is the j-th component of the vector a1. Then, applying

Strichartz estimates and using (2.21) we get

‖xjz‖L∞(t,T ;L2) ≤ CT (‖xjz
∗‖L2 + ‖2∂jz + a1,jz − xjf(z)‖L1(t,T ;L2))

≤ CT (‖xjz
∗‖L2 + (T − t)‖z‖L∞(t,T ;H1)

+ (T − t)‖z‖
4
d

L∞(t,T ;L∞)‖xjz‖L∞(t,T ;L2))

≤ CT (α
∗ + (T − t)α∗‖xjz‖L∞(t,T ;L2)),(2.33)

which yields that for t close to T , ‖xjz‖L∞(t,T ;L2) ≤ CTα
∗.

Moreover, for every 1 ≤ l ≤ d, xj∂lz satisfies

i∂t(xj∂lz) + Δ(xj∂lz) + a1 · ∇(xj∂lz) + a0(xj∂lz) +N = 0,(2.34)

where xj∂lz(T ) = xj∂lz
∗, and N = −2∂jlz − a1,j∂lz + xj(∂la1) · ∇z + xj(∂la0)z +

xj∂lf(z). Hence, by Strichartz estimates, (1.13) and (2.21),

‖xj∂lz‖L∞(t,T ;L2) ≤ CT (‖xj∂lz
∗‖L2 + ‖N‖L1(t,T ;L2))

≤ CT (‖xj∂lz
∗‖L2 + (T − t)‖z‖L∞(t,T ;H2)

+ (T − t)‖z‖
4
d

L∞(t,T ;L∞)‖xj∂lz‖L∞(t,T ;L2))

≤ CT (α
∗ + (T − t)α∗‖xj∂lz‖L∞(t,T ;L2)),

which yields that for t close to T , ‖xj∂lz‖L∞(t,T ;L2) ≤ CTα
∗. Thus, estimate (2.24)

is proved.
(ii) Let us set m∗ := 2m+1 and define the operator Dt by Dt := −i(Δ+ a1(t) ·

∇+ a0(t) + |z(t)| 4d ). Then, by equation (1.1) and the mean valued theorem,

z(t) = z∗ +

∫ T

t

Drz(r)dr = z∗ + (T − t)Dt1z(t1),(2.35)

where t1 ∈ (t, T ). Further expansion of z(t1) by (1.1) yields

z(t) = z∗ + (T − t)Dt1(z
∗ +

∫ T

t1

Drz(r)dr)

= z∗ + (T − t)Dt1z
∗ + (T − t)(T − t1)Dt1 ◦ Dt2z(t2),

where t2 ∈ (t1, T ). Then, further expansion by (2.35) and inductive arguments lead
to

z(t) = z∗ +
n∑

j=1

j−1∏
l=0

(T − tl)Dt1 ◦ · · · ◦ Dtjz
∗ +

n∏
l=0

(T − tl)Dt1 ◦ · · · ◦ Dtn+1
z(tn+1),

(2.36)

where t0 := t, tl ∈ (t, T ), 1 ≤ l ≤ n. By (1.17),

|Dt1 ◦ · · · ◦ Dtjz
∗(x)| ≤ CT |x− xk|m

∗−2j ,(2.37)

and by the Sobolev embedding H2m+2+d ↪→ C
2(m+1)
b , for 2 ≤ n ≤ m,

‖Dt1 ◦ · · · ◦ Dtn+1
z(tn+1)‖L∞ ≤ CT,m‖z‖

L∞(t,T ;C
2(m+1)
b )

(2.38)

≤ CT,m‖z‖L∞(t,T ;H2m+2+d).
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Hence, we derive that for 2 ≤ n ≤ m,

|z(t)| ≤ CT,m(|x− xk|m
∗
+

n∑
j=1

(T − t)j |x− xk|m
∗−2j(2.39)

+ (T − t)n+1), for |x− xk| < 1.

Note that |λky+αk−xk| ≤ CP 〈y〉 ≤ C(T−t)〈y〉. Moreover, since |αk−xk| < 1
2 ,

|y| > 1
2λk

in the regime {y ∈ Rd : |λky + αk − xk| ≥ 1}, and so

‖e−δ|y|z(t, λky + αk)I|λky+αk−xk|≥1‖L∞ ≤ CT,me−
δ

T−t .(2.40)

Taking into account (2.31), (2.39) and (2.40) we obtain

‖e−δ|y|εz,k(y)‖L∞ ≤λ
d
2

k ‖e−δ|y|z(λky + αk)(I|λky+αk−xk|<1 + I|λky+αk−xk|≥1)‖L∞

≤CT,m(T − t)
d
2 ((T − t)m

∗−n + (T − t)n+1) + CT,me−
δ

T−t .(2.41)

This yields that, for n = m and t close to T , ‖e−δ|y|εz,k(y)‖L∞ ≤ CT,m,δ(T −
t)m+1+ d

2 .
Similarly, by (2.36), for any multi-index |υ| ≤ 2,

∂υ
xz(t) = ∂υ

xz
∗ +

n∑
j=1

j−1∏
l=0

(T − tl)∂
υ
x ◦ Dt1 ◦ · · · ◦ Dtjz

∗(2.42)

+

n∏
l=0

(T − tl)∂
υ
x ◦ Dt1 ◦ · · · ◦ Dtn+1

z(tn+1).

As in (2.37) and (2.38), we have |∂υ
x ◦ Dt1 ◦ · · · ◦ Dtjz

∗(x)| ≤ CT |x− xk|m
∗−2j−|υ|,

and for n ≤ m− 1,

‖∂υ
x ◦ Dt1 ◦ · · · ◦ Dtn+1

z(tn+1)‖L∞ ≤ CT,m‖z‖L∞(t,T ;H2m+2+d).(2.43)

Thus, for any multi-index |υ| ≤ 2 and n ≤ m− |υ|,

|∂υ
xz(t)| ≤ CT,m(|x− xk|m

∗−|υ| +
n∑

j=1

(T − t)j |x− xk|m
∗−2j−|υ|(2.44)

+ (T − t)n+1), for |x− xk| < 1.

Using ∂υ
xεz,k(t, y) = λ

d
2+|υ|
k ∂υ

y z(t, λky + αk)e
−iθk and arguing as in the proof of

(2.41), we get

‖e−δ|y|∂υ
y εz,k(t)‖L∞ ≤ CT,m(T − t)

d
2+|υ|((T − t)m

∗−|υ|

+
n∑

j=1

(T − t)m
∗−j−|υ| + (T − t)n+1) + CT,me−

δ
T−t

≤ CT,m((T − t)m
∗−n+ d

2 + (T − t)n+|υ|+1+ d
2 + e−

δ
T−t )

≤ CT,m,δ(T − t)m+1+ d
2 ,(2.45)

where in the last step we chose n = m− |υ| for 1 ≤ |υ| ≤ 2.
Therefore, the proof of Lemma 2.7 is complete. �

For the coefficients of lower order perturbations, we have the following estimates.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

MULTI-BUBBLE BOURGAIN-WANG SOLUTIONS 535

Lemma 2.9. For any multi-index υ, |υ| ≤ 2, set ∂̃υφl,k(y) := (∂υφl)(λky + αk),
1 ≤ l ≤ N . Then,

|∂̃υφl,k(y)| ≤ CP υ∗+1−|υ|〈y〉υ∗+1, 0 ≤ |υ| ≤ υ∗,(2.46)

where υ∗ is the index of flatness in Hypothesis (H1). In particular, for ã1,k(t, y) :=
a1(t, λky + αk), ã0,k(t, y) := a0(t, λky + αk), we have that for any multi-index υ,
|υ| ≤ 2, there exists C > 0 such that

|∂υ
y (ã1,k(t, y))| ≤ Cλ

|υ|
k P υ∗−|υ|〈y〉υ∗+1,(2.47)

|∂υ
y (ã0,k(t, y))| ≤ Cλ

|υ|
k P υ∗−1−|υ|〈y〉2υ∗+2.(2.48)

Proof. By Taylor’s expansion and (1.14),

|∂̃υφl,k(y)| ≤ C(λky + αk − xk)
υ∗+1−|υ| ≤ CP υ∗+1−|υ|〈y〉υ∗+1, 0 ≤ |υ| ≤ υ∗.

This yields (2.46). Estimates (2.47) and (2.48) then follow from (2.46), (1.2) and
(1.3). �
The remainder profile R. Lemma 2.10 permits us to control the H1 and Lp-
norms of remainder.

Lemma 2.10 ([65, Lemma 2.7]). There exists C > 0 such that

‖R‖H1 ≤ C(T − t)−1D, ‖R‖L2‖∇R‖L2 ≤ (T − t)−1D2,(2.49)

‖R‖pLp ≤ C(T − t)−d( p
2−1)Dp.(2.50)

In order to deal with the multi-bubble case, it is useful to decompose the remain-
der R into K localized profiles concentrating at the singularities. As in [65], since
equation (1.4) is invariant under orthogonal transforms, we may take an orthonor-
mal basis {vj}dj=1 of Rd, such that (xj −xl) ·v1 �= 0 for any 1 ≤ j �= l ≤ K. Hence,
without loss of generality, we assume that x1 · v1 < x2 · v1 < · · · < xK · v1. Then,
set σ := 1

12 min1≤k≤K−1{(xk+1 − xk) · v1} > 0. Let Φ(x) be a smooth function

on Rd such that 0 ≤ Φ(x) ≤ 1, |∇Φ(x)| ≤ Cσ−1, Φ(x) = 1 for x · v1 ≤ 4σ and
Φ(x) = 0 for x · v1 ≥ 8σ. Define the localization functions {Φk} by

(2.51)
Φ1(x) := Φ(x− x1), ΦK(x) := 1− Φ(x− xK−1),

Φk(x) := Φ(x− xk)− Φ(x− xk−1), 2 ≤ k ≤ K − 1.

One has the partition of unity 1 =
∑K

j=1 Φk. Then, R =
∑K

k=1Rk, with Rk :=
RΦk. The corresponding renormalized remainders εk, 1 ≤ k ≤ K, are defined by

Rk(t, x) = λ
− d

2

k εk(t,
x− αk

λk
)eiθk .(2.52)

The following almost orthogonality between profiles {Rk} and {Uk} is a conse-
quence of the orthogonality (2.4) and the decoupling Lemma 2.6.

Lemma 2.11 (Almost orthogonality [65, Lemma 4.4]). Let t∗ be as in Theorem
2.3. Then, for t∗ and T∗ close to T , there exists δ > 0 such that for every 1 ≤ k ≤ K
and any t ∈ [t∗, T∗],
(2.53)

|Re
∫
(x− αk)UkRkdx|+ |Re

∫
|x− αk|2UkRkdx| ≤ Ce−

δ
T−t ‖R‖L2 ,

| Im
∫

∇UkRkdx|+ | Im
∫

ΛkUkRkdx|+ | Im
∫

�kRkdx| ≤ Ce−
δ

T−t ‖R‖L2 .
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Furthermore, by (1.1), (1.21) and (2.1), the remainder R satisfies the equation

i∂tR+ΔR+ a1 · ∇R+ a0R+ (f(v)− f(U + z)) = −η,(2.54)

where f(u) := |u| 4du and

η =i∂tU +ΔU + a1 · ∇U + a0U + f(U + z)− f(z).(2.55)

The estimates of η are contained in Lemma 2.12.

Lemma 2.12. Suppose that P = O(T − t) and |αk − xk| < 1
2 for any t ∈ [t∗, T∗].

Then,

|η(t, x)| ≤ C(T − t)−
d
2−2

K∑
k=1

(Mod+ |εz,k(y)|+ (T − t)υ∗+1)e−δ|y|
∣∣∣∣
y=

x−αk
λk

+ Cη̃,

(2.56)

where η̃ satisfies ‖η̃(t)‖L2 ≤ Ce−
δ

T−t , and for any multi-index υ with |υ| ≤ 2,

‖∂υ
xη(t)‖L2 ≤ C(T − t)−2−|υ|(Mod+ α∗(T − t)m+1+ d

2 + (T − t)υ∗+1).(2.57)

Proof. Let Ψk be as in (2.12). We decompose η into four parts:

η =η1 + η2 + η3 + η4,(2.58)

where

η1 =

K∑
k=1

eiθk(t)

λk(t)2+
d
2

Ψk(t,
x− αk(t)

λk(t)
),(2.59)

η2 = f (U + z)− f (U)− f(z),(2.60)

η3 = f(U)−
K∑

k=1

f(Uk),(2.61)

η4 = a1 · ∇U + a0U.(2.62)

By the exponential decay (1.7) of ground state and ‖εz,k‖L∞ ≤ C,

|η1 + η2| ≤ C(T − t)−
d
2−2

K∑
k=1

(Modk + |εz,k(t, y)|) e−δ|y|
∣∣∣∣
y=

x−αk
λk

,(2.63)

and η̃ := |η3| contains different blow-up profiles, and thus, by Lemma 2.6,

(2.64) ‖η̃(t)‖L2 ≤ Ce−
δ

T−t .

Moreover, since

η4(t, x)=

K∑
k=1

λ
− d

2−1

k (t)ã1,k(t, y)∇Qk(t, y)e
iθk+λ

− d
2

k (t)ã0,k(t, y)Qk(t, y)e
iθk

∣∣
y=

x−αk
λk

,

(2.65)

where ã1,k, ã0,k are as in Lemma 2.9, using Lemma 2.9, (1.7) and P ≤ C(T − t) we
get

|η4(t, x)| ≤ C

K∑
k=1

(T − t)υ∗− d
2−1e−

δ
2 |y|

∣∣
y=

x−αk
λk

.(2.66)
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Hence, (2.63), (2.64) and (2.66) together yield (2.56). Concerning (2.57), by (2.12),
it is clear that

‖∂υ
xη1‖L2 ≤ C(T − t)−2−|υ|Mod.(2.67)

Moreover, expanding f and then using the exponential decay (1.7) of ground state
we have

‖∂υ
xη2‖L2 ≤ C(T − t)−2−|υ|

∑
|υ|≤2

‖e−δ|y|∂υ
y εz,k‖L∞ + Ce−

δ
T−t .(2.68)

η3 contains the interactions between different blow-up profiles, so we get ‖∂υ
xη3‖L2 ≤

Ce−
δ

T−t according to Lemma 2.6. At last, applying Lemma 2.9 we also infer that

‖∂υ
xη4‖L2 ≤

K∑
k=1

λ
−|υ|+ d

2

k ‖∂υ
y (ã1λ

− d
2−1

k ∇Qk + ã0λ
− d

2

k Qk)‖L2 ≤ C(T − t)υ∗−|υ|−1.

(2.69)

Therefore, putting the above estimates altogether we obtain (2.57). �

3. Localized mass and (generalized) energy

This section is devoted to the key estimates of localized mass, energy and the
generalized energy.

3.1. Control of localized mass. Recall that the localized mass is defined by

Mk := 2Re〈Rk, Uk〉+
∫

|R|2Φkdx,(3.1)

where Rk = RΦk and {Φk} are the localization functions given by (2.51).
The main estimate is contained in Theorem 3.1.

Theorem 3.1 (Control of localized mass). Suppose P = O(T − t). Then, there
exists C > 0 such that for every 1 ≤ k ≤ K,

|Mk(t)| ≤ C

∫ T∗

t

(α∗D +
D2

T − s
)ds+ Cα∗(D + (T − t)m+1+ d

2 ), t ∈ [t∗, T∗].(3.2)

Proof. On one hand, the geometrical decomposition (2.1) and Lemma 2.6 yield the
expansion:∫

|v(t)|2Φkdx =

∫
|U |Φ2

kdx+

∫
|z|2Φkdx+

∫
|R|2Φkdx

+ 2Re

∫
RkUkdx+ 2Re

∫
zUkdx+ 2Re

∫
zRkdx

+O(e−
δ

T−t ‖R‖L2).(3.3)

On the other hand, since v(T∗) = S(T∗) + z(T∗), we have∫
|v(T∗)|2Φkdx =

∫
(|S(T∗)|2 + |z(T∗)|2)Φkdx+ 2Re

∫
(zS)(T∗)Φkdx.(3.4)

Note that the integrations
∫
|z|2Φkdx and

∫
|z(T∗)|2Φkdx only contribute a small

constant (α∗)2, which, however, is insufficient to close the bootstrap arguments
later. The key point is that one more factor D can be explored by subtracting (3.4)
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from (3.3) and then both the dynamics generated by equations (1.1) and (1.21) can
be used. To be precise, we derive from (3.3) and (3.4) that

|Mk(t)| ≤ |
∫
(|v(t)|2 − |v(T∗)|2)Φkdx−

∫
(|z(t)|2 − |z(T∗)|2)Φkdx|

(3.5)

+ |
∫
(|U(t)|2 − |S(T∗)|2)Φkdx|+ 2(|

∫
(zUk)(t)dx|+ |

∫
(zRk)(t)dx|

+ |
∫
(zS)(T∗)Φkdx|) + Ce−

δ
T−t ‖R‖L2

=: K1 +K2 +K3 + Ce−
δ

T−t ‖R‖L2 .(3.6)

Let us first treat the easier two terms K2, K3. Actually, it holds that (see
[65, (5.22),(5.23)])

(3.7)

∫
|U(t)|2Φkdx = ‖Q‖2L2 +O(e−

δ
T−t ),∫

|S(T∗)|2Φkdx = ‖Q‖22 +O(e−
δ

T−T∗ ) = ‖Q‖22 +O(e−
δ

T−t ),

which yields that

K2(t) ≤ Ce−
δ

T−t .(3.8)

Moreover, by (2.21) and (2.25),

K3(t) ≤ C(‖z‖L2‖R(t)‖L2 + ‖e−δ|y|(|εz,k(t)|+ |εz,k(T∗)|)‖L∞ + e−
δ

T−T∗ )(3.9)

≤ Cα∗(D + (T − t)m+1+ d
2 ).

Hence, it remains to treat the first term K1 on the R.H.S. of (3.5). For this
purpose, we derive from equation (1.1) and equation (1.21) that

d

dt

∫
|v|2Φkdx =Im

∫
(2v∇v + a1|v|2) · ∇Φkdx,(3.10)

d

dt

∫
|z|2Φkdx =Im

∫
(2z∇z + a1|z|2) · ∇Φkdx.(3.11)

Thus,

(3.12)
d

dt

∫
|v|2Φkdx− d

dt

∫
|z|2Φkdx

= Im

∫
2(v∇v − z∇z) · ∇Φk + (|v|2 − |z|2)a1 · ∇Φkdx.

Note that, by (2.1),

v∇v − z∇z = U∇(U +R+ z) + (R+ z)∇U + z∇R+R∇z +R∇R.(3.13)

Since P = O(T − t), |xk −αk(t)| ≤ σ, 1 ≤ k ≤ K, supp∇Φk ⊆ ∩K
k=1{x : |x−αk| ≥

3σ}. By (1.7),

|
∫ (

U · ∇(U +R+ z) + (R+ z)∇U
)
· ∇Φkdx| ≤ Ce−

δ
T−t .(3.14)
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Moreover, the integration by parts formula yields

|
∫

z∇R · ∇Φkdx| = |
∫

R∇z · ∇Φk +RzΔΦkdx| ≤ C‖z‖H1‖R‖L2 .(3.15)

Thus, it follows from (3.13)-(3.15) that

| Im
∫
(v∇v − z∇z) · ∇Φkdx| ≤ C(‖z‖H1‖R‖L2 + ‖R‖L2‖∇R‖L2 + e−

δ
T−t ).

(3.16)

Similarly, we have

| Im
∫
(|v|2 − |z|2)a1 · ∇Φkdx| ≤ C(‖z‖L2‖R‖L2 + ‖R‖2L2 + e−

δ
T−t ).(3.17)

Hence, we conclude from (2.21), (3.12), (3.16) and (3.17) that

| d
dt

∫
|v|2Φkdx− d

dt

∫
|z|2Φkdx|

≤ C(‖z‖H1‖R‖L2 + ‖R‖2L2 + ‖R‖L2‖∇R‖L2 + e−
δ

T−t )

≤ C(α∗D +
D2

T − t
+ e−

δ
T−t ),

where δ > 0. Integrating both sides we then obtain

K1 ≤ C

∫ T∗

t

α∗D +
D2

T − s
ds+ Ce−

δ
T−t .(3.18)

Therefore, plugging (3.8), (3.9) and (3.18) into (3.5) we obtain (3.2). The proof
is complete. �

3.2. Refined estimate of β. In this subsection we shall derive the refined estimate
of parameter β = (βk) from the energy functional, defined by

E(v) :=
1

2

∫
Rd

|∇v|2dx− d

2d+ 4

∫
Rd

|v|2+ 4
d dx.(3.19)

Unlike in the NLS case, the energy of solutions to (1.1) is no longer conserved,
it is thus important to first control the variation of energy. This is the content of
Lemma 3.2.

Lemma 3.2 (Variation of the energy). Suppose P = O(T − t). Then, there exists
C > 0 such that

| d
dt
E(v)− d

dt
E(z)| ≤ C(α∗D +

D2

(T − t)2
+ (T − t)υ∗−3), ∀t ∈ [t∗, T∗].(3.20)

Remark 3.3. Let us mention that the variation estimate is controlled by comparing
the energies of v and z, which is quite different from what is done in [65]. As in the
proof of Theorem 3.1, it is important to gain one more factor D from this refined
estimate.
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Proof. As in the previous case of localized mass, we consider the difference between
two energies of u and z. Using (1.1) and (1.21) we compute, as in [65, (5.26)],

d

dt
E(v) =− 2

N∑
l=1

hl Re

∫
∇2φl(∇v,∇v)dx+

1

2

N∑
l=1

hl

∫
Δ2φl|v|2dx

+
2

d+ 2

N∑
l=1

hl

∫
Δφl|v|2+

4
d dx−

d∑
j=1

Im

∫
∇(

N∑
l=1

∂jφlhl)
2 · ∇vvdx,(3.21)

d

dt
E(z) =− 2

N∑
l=1

hl Re

∫
∇2φl(∇z,∇z)dx+

1

2

N∑
l=1

hl

∫
Δ2φl|z|2dx

+
2

d+ 2

N∑
l=1

hl

∫
Δφl|z|2+

4
d dx−

d∑
j=1

Im

∫
∇(

N∑
l=1

∂jφlhl)
2 · ∇zzdx.(3.22)

In order to control the difference d
dtE(v) − d

dtE(z), we first see that, by (2.1),
integration by parts formula and (2.25),

|Re
∫

∇2φl(∇v,∇v)dx− Re

∫
∇2φl(∇z,∇z)dx|

= |
d∑

i,j=1

Re

∫
∂ijφl∂i(U +R)∂j(U +R)− ∂ijjφl∂jz(U +R)

− ∂iijφl(U +R)∂jz − ∂ijφl∂ijz(U +R)− ∂ijφl(U +R)∂ijzdx|

≤ C

d∑
i,j=1

(‖R‖2H1 +

∫
(|∂jz|+ |∂ijz|)|R|dx

+ |
∫

∂ijφl(∂iU∂jU + ∂iU∂jR + ∂iR∂jU)dx|

+ |
∫

z∂i(∂ijjφlU) + z∂j(∂iijφlU)dx|+ |
∫

z∂ij(∂ijφlU)dx|)

≤ C(‖z‖H2‖R‖L2 + ‖R‖2H1

+ (T − t)υ∗−3(1 +

K∑
k=1

‖∇εk‖L2 +

K∑
k=1

‖e−δ|y|εz,k‖L∞) + e−
δ

T−t ).(3.23)

Similarly, we also have

|
∫

Δ2φl(|v|2 − |z|2)dx|(3.24)

≤ C(‖R‖2L2 + ‖z‖L2‖R‖L2 + (T − t)υ∗−3(1 +
K∑

k=1

‖e−δ|y|εz,k‖L∞)),

|
∫

Δφl(|v|2+
4
d − |z|2+ 4

d )dx|(3.25)

≤ C(‖R‖2+
4
d

H1 + ‖z‖1+
4
d

H1 ‖R‖L2 + (T − t)υ∗−3(1 +

K∑
k=1

‖e−δ|y|εz,k‖
1+ 4

d

L∞ )).
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Moreover, by (3.13),

Im

∫
∇(

d∑
j=1

∂jφl)
2 · (∇vv −∇zz)dx

=Im

∫
∇(

d∑
j=1

∂jφl)
2 · (∇U(U +R+ z) + (∇R+∇z)U +∇RR +∇Rz +∇zR)dx.

(3.26)

Note that, by the integration by parts formula, (2.25) and (2.46),

(3.27) |
∫

∇(

d∑
j=1

∂jφl)
2(∇zU +∇Rz)dx|

≤ C(‖z‖H1‖R‖L2 + (T − t)2υ∗−2
K∑

k=1

‖e−δ|y|εz,k‖L∞).

Using (2.46) again we also have

| Im
∫

∇(

d∑
j=1

∂jφl)
2 · (∇U(U +R+ z) +∇RU)dx|

≤C((T − t)2υ∗−2(1 +

K∑
k=1

‖e−δ|y|εz,k‖L∞ +D) + e−
δ

T−t ) ≤ C(T − t)2υ∗−2.(3.28)

Plugging these into (3.26) we get

| Im
∫

∇(
∑

∂jφh)
2 · (∇vv −∇zz)dx|

≤ C(‖z‖H1‖R‖L2 + ‖R‖L2‖∇R‖L2

+ (T − t)2υ∗−2 + (T − t)2υ∗−2
K∑

k=1

‖e−δ|y|εz,k‖L∞).(3.29)

Therefore, we conclude from the estimates (3.23), (3.24), (3.25) and (3.29) that

| d
dt
E(v)− d

dt
E(z)|

≤ C(
(
‖z‖H2 + ‖z‖1+

4
d

H1

)
‖R‖L2 + ‖R‖2H1 + ‖R‖2+

4
d

H1 + (T − t)υ∗−3)

≤ C(α∗D +
D2

(T − t)2
+ (T − t)υ∗−3),

which yields (3.20), thereby finishing the proof. �

We are now in position to derive the refined estimate of β = (βk), which is
essentially a consequence of the coercivity of energy around the ground state and
Lemma 3.2.
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Theorem 3.4 (Improved estimate of β). Suppose that P = O(T−t) and D = o(1).
Then,

K∑
k=1

|βk|2
2λ2

k

‖Q‖2L2 ≤ 1

8

K∑
k=1

(w2
k −

γ2
k

λ2
k

) +O(Er)(3.30)

for any t ∈ [t∗, T∗], where the error term

(3.31) Er :=

∫ T

t

(α∗D +
D2

(T − s)2
)ds+ α∗D

+

K∑
k=1

|Mk|
(T − t)2

+ (T − t)υ∗−2 + α∗(T − t)m−1+ d
2 .

Proof. Let F (v) := d
2d+4 |v|2+

4
d , F (U + z) and F (z) are defined similarly. Set

f(v) := |v| 4d v. Rewrite

E(v) = E(v) +

K∑
k=1

1

λ2
k

Re

∫
UkRk +

1

2
|R|2Φkdx−

K∑
k=1

1

2λ2
k

Mk.(3.32)

Using (2.1) and (6.7) we expand F (v) = F (U) +F ′(U) · z +F ′′(U, z) · z2 + F ′(U +
z) · R + F ′′(U + z,R) · R2. Then, taking into account F ′(U) · z = Re(f(U)z),
F ′(U + z) · z = Re(f(U + z)z) and the expansion

1

2
‖∇v‖2L2 =

1

2
‖∇U‖2L2 +

1

2
‖∇z‖2L2 +

1

2
‖∇R‖2L2 − Re〈ΔU +Δz,R〉 − Re〈ΔU, z〉,

we obtain

E(v) = E(U) + E(z)−
K∑

k=1

1

2λ2
k

Mk − (Re

∫
(ΔU +Δz + |U + z| 4d (U + z))Rdx

−
K∑

k=1

1

λ2
k

Re

∫
UkRkdx) + (

∫
1

2
|∇R|2dx+

K∑
k=1

1

2λ2
k

∫
|R|2Φkdx

− Re

∫
F ′′(U + z,R) ·R2dx)− Re

∫
(ΔU + |U | 4dU)zdx

− Re

∫
(F ′′(U, z) · z2 − F (z))dx

=: E(U) + E(z)−
K∑

k=1

1

2λ2
k

Mk +

4∑
l=1

El.(3.33)

Note that E1 and E2 are ordered by the homogeneity of R, and E3 and E4 contain
the perturbations with the regular profile z. Next we estimate El separately, 1 ≤
l ≤ 4.

For the linear term E1, by Lemma 2.6,

E1 =−
K∑

k=1

Re

∫
(ΔUk − λ−2

k Uk + |Uk|
4
dUk)Rkdx

− Re

∫
(Δz + |U + z| 4d (U + z)− |U | 4dU)Rdx+O(e−

δ
T−t ‖R‖L2)

= : E11 + E12 +O(e−
δ

T−t ‖R‖L2).(3.34)
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Using the identity (6.36) and the almost orthogonality (2.53) we have (see [12,
(3.38)])

E11 = −
K∑

k=1

1

λ2
k

Im

∫
(γkΛQk − 2βk · ∇Qk)εkdx

−
K∑

k=1

1

λ2
k

Re

∫
|βk − γk

2
y|2Qkεkdx

= −
K∑

k=1

|βk|2
λ2
k

Re

∫
UkRkdx+O(e−

δ
T−t ‖R‖L2)

= −
K∑

k=1

|βk|2
2λ2

k

Mk +O(‖R‖2L2 + e−
δ

T−t ‖R‖L2).(3.35)

Moreover, by (2.21) and (2.25),

|E12| ≤ C

∫
(|Δz|+ |U | 4d |z|+ |z|1+ 4

d )|R|dx ≤ C(α∗‖R‖L2 + e−
δ

T−t ).(3.36)

Thus, we obtain

E1 = −
K∑

k=1

|βk|2
2λ2

k

Mk +O(α∗‖R‖L2 + e−
δ

T−t ) + o(
D2

(T − t)2
).(3.37)

Concerning the second term E2, set

Ẽ2 := −Re

∫
F ′′(U + z,R) ·R2 − F ′′(U,R) ·R2dx.(3.38)

We estimate

E2 =
1

2

∫
|∇R|2dx+

K∑
k=1

1

2λ2
k

∫
|R|2Φkdx− Re

∫
F ′′(U,R) ·R2dx+ Ẽ2

=
1

2

∫
|∇R|2dx+

K∑
k=1

1

λ2
k

|R|2Φk − (1 +
2

d
)|U | 4d |R|2

− 2

d
|U | 4d−2U2R

2
dx+ Ẽ2 +O(

D3

(T − t)2
)

≥ C̃
D2

(T − t)2
+ Ẽ2 +O(

K∑
k=1

M2
k

(T − t)2
+ e−

δ
T−t ),(3.39)

where C̃ > 0, the error in the second step is caused by the remainders of orders
higher than two (see [12, (3.34)]), and the last step is mainly due to the local
coercivity of linearized operator in Lemma 6.1, see the proof of [12, (3.39)], and
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D3

(T−t)2 = o
(

D2

(T−t)2

)
. The error Ẽ2 can be bounded by

|Ẽ2| ≤ C

∫
(|U | 4d−1 + |R| 4d−1 + |z| 4d−1)|z||R|2dx

≤ C((T − t)−2
K∑

k=1

‖e−δ|y|εz,k‖L∞‖R‖2L2 + ‖z‖L∞‖R‖1+
4
d

L1+ 4
d

+ ‖z‖
4
d

L∞‖R‖2L2 + e−
δ

T−t )

≤ C((T − t)−2
K∑

k=1

‖e−δ|y|εz,k‖L∞ + α∗(T − t)−2+ d
2 + α∗)D2 + Ce−

δ
T−t ,(3.40)

where we also used (2.50) and D = O(1) in the last step.

Thus, for t close to T such that C
(∑K

k=1 ‖e−δ|y|εz,k‖L∞ + 2(T − t)
d
2

)
≤ 1

2 C̃, it

follows that

E2 ≥ C̃

2

D2

(T − t)2
+O(

K∑
k=1

M2
k

(T − t)2
+ e−

δ
T−t ).(3.41)

The last two terms E3 and E4 can be estimated easily by using (1.7) and (2.25):

|E3| ≤ C(T − t)−2
K∑

k=1

‖e−δ|y|εz,k‖L∞ + Ce−
δ

T−t(3.42)

≤ Cα∗(T − t)m−1+ d
2 ,

|E4| ≤ C

1+ 4
d∑

j=2

∫
|U |2+ 4

d−j |z|jdx(3.43)

≤ C(T − t)−2
K∑

k=1

‖e−δ|y|εz,k‖L∞ + Ce−
δ

T−t

≤ Cα∗(T − t)m−1+ d
2 .

Thus, combining (3.33), (3.37), (3.41), (3.42) and (3.43) we conclude that for
some C > 0,

E(v) ≥ E(U) + E(z) +
CD2

(T − t)2
−

K∑
k=1

1 + |βk|2
2λ2

k

Mk(3.44)

+O(

K∑
k=1

M2
k

(T − t)2
+ α∗(D + (T − t)m−1+ d

2 )).

Furthermore, since v(T∗) = S(T∗) + z(T∗) we derive that

E(v(T∗)) = E(S(T∗)) + E(z(T∗)) + Re

∫
∇S(T∗)∇z̄(T∗)dx(3.45)

−
∫

F (v(T∗))− F (S(T∗))− F (z(T∗))dx.
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As in (3.42) and (3.43), by (2.25) and T − T∗ ≤ T − t,

|Re
∫

∇S(T∗)∇z̄(T∗)dx|

≤ C(T − t)−2
K∑

k=1

‖e−δ|y|εz,k(T∗)‖L∞ + Ce−
δ

T−T∗

≤ Cα∗(T − t)m−1+ d
2 ,(3.46)

|
∫

F (v(T∗))− F (S(T∗))− F (z(T∗))dx|

≤ C(T − t)−2
K∑

k=1

‖e−δ|y|εz,k(T∗)‖L∞ + Ce−
δ

T−T∗

≤ Cα∗(T − t)m−1+ d
2 .(3.47)

Thus, it follows from (3.45), (3.46) and (3.47) that

E(v(T∗)) = E(S(T∗)) + E(z(T∗)) +O
(
α∗(T − t)m−1+ d

2

)
.(3.48)

Now, plugging (3.48) into (3.44) we derive

E(U(t)) + C
D2

(T − t)2

≤ (E(v(t))− E(v(T∗)))− (E(z(t))− E(z(T∗))) + E(S(T∗))

+

K∑
k=1

1 + |βk|2
2λ2

k

Mk +O(

K∑
k=1

M2
k

(T − t)2
+ α∗D + α∗(T − t)m−1+ d

2 ).(3.49)

Thus, by the variation control (3.20) in Lemma 3.2,

E(U(t)) + C
D2

(T − t)2
≤E(S(T∗)) +O(Er),(3.50)

where Er is as in (3.31). Moreover, (2.2) and Lemma 2.6 yield

E(U(t)) =
K∑

k=1

(
|βk|2
2λ2

k

‖Q‖2L2 +
γ2
k

8λ2
k

‖yQ‖2L2) +O(e−
δ

T−t ),(3.51)

E(S(T∗)) =
K∑

k=1

w2
k

8
‖yQ‖2L2 +O(e−

δ
T−T∗ ).(3.52)

Therefore, plugging (3.51) and (3.52) into (3.50) we obtain (3.30). The proof is
complete. �

3.3. Monotonicity of generalized energy. This subsection is mainly devoted
to the crucial monotonicity property of generalized energy. Let χ(x) = ψ(|x|) be a
smooth radial function on Rd, where ψ satisfies ψ′(r) = r if r ≤ 1, ψ′(r) = 2− e−r

if r ≥ 2, and

(3.53) |ψ
′′′
(r)

ψ′′(r)
| ≤ C,

ψ′(r)

r
− ψ

′′
(r) ≥ 0.

Let χA(x) := A2χ( x
A ), A ≥ 1, f(v) := |v| 4d v and F (v) := d

2d+4 |v|2+
4
d .
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The generalized energy, adapted to the multi-bubble case, is defined by

I (t) :=
1

2

∫
|∇R|2dx+

1

2

K∑
k=1

∫
1

λ2
k

|R|2Φkdx

− Re

∫
F (v)− F (U + z)− f(U + z)Rdx

+
K∑

k=1

γk
2λk

Im

∫
(∇χA)(

x− αk

λk
) · ∇RRΦkdx =: I (1) + I (2),(3.54)

where I (1) mainly contains the quadratic terms of remainder (up to acceptable
errors) and I (2) is a Morawetz type functional. The key monotonicity property is
formulated below.

Theorem 3.5 (Monotonicity of generalized energy). Suppose that P = O(T − t),
|βk| + D(t) = O((T − t)2). Then, there exist C1, C2 > 0 such that for A large
enough and t ∈ [t∗, T∗],

dI

dt
≥ C1

K∑
k=1

γk
λ2
k

∫
(|∇Rk|2 +

1

λ2
k

|Rk|2)e−
|x−αk|
Aλk dx− C2AEr,(3.55)

where

Er =
K∑

k=1

λkλ̇k + γk
λ4
k

Mk + (
Mod

(T − t)3
+ α∗(T − t)m−3+ d

2 + (T − t)υ∗−3)D

+
D2

(T − t)2
+ ε

D2

(T − t)3
+

M2
k

(T − t)3
+ e−

δ
T−t .(3.56)

The functionals I (1) and I (2) will be treated in Lemmas 3.6 and 3.7, respec-
tively.

Lemma 3.6 (Control of I (1)). Consider the situations as in Theorem 3.5. Then,
there exists C > 0 such that for any t ∈ [t∗, T∗],

dI (1)

dt
≥

K∑
k=1

γk
λ4
k

‖εk‖2L2 −
K∑

k=1

γk
λ4
k

Re

∫
(1 +

2

d
)|Qk|

4
d |εk|2 +

2

d
|Qk|

4
d−2Qk

2
ε2kdy

−
K∑

k=1

γk
λ4
k

Re

∫
y · ∇Qk (f ′′(Qk) · ε2k)dy − CEr,(3.57)

where Er is the error as in (3.56) but without the term
M2

k

(T−t)3 .



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

MULTI-BUBBLE BOURGAIN-WANG SOLUTIONS 547

Proof. Let η be as in (2.55). Using equations (2.54) and (6.7) we compute as in
[65, (5.32)] that

dI (1)

dt
=−

K∑
k=1

λ̇kλ
−3
k

∫
|R|2Φkdx−

K∑
k=1

λ−2
k Im〈f ′(U + z) ·R,Rk〉

− Re〈f ′′(U + z,R) ·R2, ∂t(U + z)〉 −
K∑

k=1

λ−2
k Im〈R∇Φk,∇R〉

−
K∑

k=1

λ−2
k Im〈f ′′(U + z,R) ·R2, Rk〉

− Im〈ΔR−
K∑

k=1

λ−2
k Rk + f(v)− f(U + z), a1 · ∇R + a0R〉

− Im〈ΔR−
K∑

k=1

λ−2
k Rk + f(v)− f(U + z), η〉 =:

7∑
l=1

I
(1)
t,l .(3.58)

The terms {I (1)
t,l } are estimated as follows:

(i) Estimate of I
(1)
t,1 . Since P = O(T − t), D = O((T − t)2), by Theorem 2.3,

Mod = O((T − t)2).(3.59)

Hence, we compute

− λ̇k

λ3
k

=
γk
λ4
k

− λkλ̇k + γk
λ4
k

=
γk
λ4
k

+O(
Mod

λ4
k

) =
γk
λ4
k

+O(
D2

(T − t)2
),

which yields that

I
(1)
t,1 =

K∑
k=1

γk
λ4
k

∫
|R|2Φkdx+O(

D2

(T − t)2
).(3.60)

(ii) Estimates of I
(1)
t,2 and I

(1)
t,3 . Rewrite

I
(1)
t,2 + I

(1)
t,3 =−

K∑
k=1

λ−2
k Im〈f ′(U) ·R,Rk〉 − Re〈f ′′(U,R) ·R2, ∂tU〉+ er,

where er denotes the difference

er :=−
K∑

k=1

λ−2
k Im〈f ′(U + z) ·R− f ′(U) ·R,Rk〉

−
(
Re〈f ′′(U + z,R) ·R2, ∂t(U + z)〉 − Re〈f ′′(U,R) ·R2, ∂tU〉

)
=: er1 + er2.

(3.61)

We claim that

er = O(α∗(T − t)−2D2).(3.62)
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To this end, by (6.13), the renormalized variable εz,k in (2.20),

|er1| ≤ C(T − t)−2

∫
(|U | 4d−1 + |z| 4d−1)|z||R|2dx

≤ C((T − t)−4
K∑

k=1

‖e−δ|y|εz,k‖L∞‖R‖2L2

+ (T − t)−2‖z‖
4
d

L∞‖R‖2L2 + e−
δ

T−t ‖R‖2L2)

≤ C(α∗(T − t)m−3+ d
2 + α∗(T − t)−2)D2.(3.63)

Regarding the second term er2, note that

er2 = Re〈f ′′(U + z,R) ·R2, ∂tz〉+Re〈f ′′(U + z,R) ·R2 − f ′′(U,R) ·R2, ∂tU〉
=: er21 + er22.

By (6.15) and estimates (2.13), (2.21), (2.22) and (2.50),

|er21| ≤ C

∫
(|U | 4d−1 + |z| 4d−1 + |R| 4d−1)|R|2|∂tz|dx

≤ C‖∂tz‖L2(‖U‖
4
d−1

L4( 4
d
−1)

‖R‖2L8 + ‖z‖
4
d−1

L∞ ‖R‖2H1 + ‖R‖
4
d+1

L
8
d
+2
)

≤ Cα∗(T − t)−2D2.(3.64)

Moreover, since by (2.11) and Mod = O(1),

‖∂tUk(t)‖L∞ ≤ C(T − t)−
d
2−2.(3.65)

Then, using (6.14), (2.25) and (2.50) we get

|er22| ≤ C

∫
(|U | 4d−2 + |R| 4d−2 + |z| 4d−2)|z||R|2|∂tU |dx

≤ C(T − t)−4
K∑

k=1

‖e−δ|y|εz,k‖L∞‖R‖2L2

+ C(T − t)−d−2
K∑

k=1

‖e−δ|y|εz,k‖L∞‖R‖
4
d

L
4
d
+ Ce−

δ
T−t ‖R‖2L2

≤ C(T − t)−4
K∑

k=1

‖e−δ|y|εz,k‖L∞D2 + Ce−
δ

T−tD2 ≤ Cα∗(T − t)m−3+ d
2D2.(3.66)

Hence, plugging (3.63), (3.64) and (3.66) into (3.61) we prove (3.62), as claimed.
Since |βk|+D(t) +Mod(t) = O((T − t)2), as in the proof of [12, (4.18),(4.20)],

we obtain

I
(1)
t,2 + I

(1)
t,3 =−

K∑
k=1

γk
λ2
k

Re

∫
(1 +

2

d
)|Uk|

4
d |Rk|2 +

2

d
|Uk|

4
d−2Uk

2
R2

kdx

−
K∑

k=1

γk
λk

Re

∫
(
x− αk

λk
) · ∇Uk f ′′(Uk) ·R2

kdx+O((T − t)−2D2(t)).(3.67)

(iii) Estimate of I
(1)
t,4 . Note that this term is of the same order with the leading

order term in (3.60). We need to use the smallness in Case (I) or Case (II) to
control this bad term, see also [65, (5.36), (5.37)] for more details.
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In Case (I), since
∑K

k=1∇Φk = 0 and |ω − ωk| ≤ ε, I
(1)
t,4 can be bounded by

|I (1)
t,4 | =

∣∣∣∣ ( 1

λ2
k

− 1

ω2(T − t)2

)
Im〈R∇Φk,∇R〉

∣∣∣∣
≤

K∑
k=1

|ω − ωk||ω + ωk|
ω2ω2

k(T − t)2
‖R‖L2‖∇R‖L2 ≤ Cε

D2

(T − t)3
.(3.68)

In Case (II), since ‖∇Φ‖L∞ ≤ Cσ−1 ≤ Cε, it can be bounded immediately by

|I (1)
t,4 | ≤

K∑
k=1

1

λ2
k

‖∇Φk‖L∞‖R‖L2‖∇R‖L2 ≤ Cε
D2

(T − t)3
.(3.69)

Thus we get

|I (1)
t,4 | ≤ Cε(T − t)−3D2.(3.70)

(iv) Estimate of I
(1)
t,5 . Using (6.15), (2.13), (2.50) and D ≤ C(T − t)2 we get

|I (1)
t,5 | ≤ C(T − t)−2(‖U‖

4
d−1

L2( 4
d
−1)

‖R‖3L6 + ‖z‖
4
d−1

L∞ ‖R‖3L3 + ‖R‖
4
d+2

L
4
d
+2
)

≤ C(T − t)−2((T − t)−2D3 + α∗(T − t)−
d
2D3 + (T − t)−2D

4
d+2)

≤ C(T − t)−2D2.(3.71)

(v) Estimate of I
(1)
t,6 . By the integration by parts formula and (6.12), we get

(see also [65, (5.42)])

| Im〈ΔR−
K∑

k=1

λ−2
k Rk + f(v)− f(U + z), a1 · ∇R〉|

≤C(‖∇R‖2L2 + (T − t)−2‖R‖2L2) + C

∫
(|U | 4d + |z| 4d + |R| 4d )|R||a1∇R|dx.(3.72)

Then, by (1.2), the change of variables and (2.46),∫
(|U | 4d + |z| 4d + |R| 4d )|R||a1 · ∇R|dx

≤C(T − t)−2
N∑
l=1

K∑
k=1

‖e−δ|y|∇φl(λky + αk)‖L∞‖R‖L2‖∇R‖L2

+ C(‖z‖
4
d

L∞‖R‖L2‖∇R‖L2 + ‖R‖
4
d+1

L
8
d
+2
‖∇R‖L2) + Ce−

δ
T−t ‖R‖2L2

≤C((T − t)υ∗−3 + α∗(T − t)−1)D2 + C(T − t)−3D2+ 4
d + Ce−

δ
T−tD2.(3.73)

Since D ≤ C(T − t), we come to

| Im〈ΔR−
K∑

k=1

λ−2
k Rk + f(u)− f(U + z), a1 · ∇R〉| ≤C(T − t)−2D2.(3.74)

Similarly, we have

| Im〈ΔR −
K∑

k=1

λ−2
k Rk + f(v)− f(U + z), a0R〉| ≤C(T − t)−2D2.(3.75)
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Thus, we conclude from (3.74) and (3.75) that

|I (1)
t,6 | ≤ C(T − t)−2D2.(3.76)

(vi) Estimate of I
(1)
t,7 . It remains to treat the delicate inner product I

(1)
t,7 in-

volving the η term. First, we claim that

(3.77) I
(1)
t,7 = −

K∑
k=1

Im〈ΔRk − λ−2
k Rk + f ′(Uk) ·Rk, η〉

+O(α∗(T − t)m−1+ d
2 D + (T − t)−2D2 + e−

δ
T−t ).

This means that the inner products involving Rk of orders higher than one are
acceptable errors.

To this end, we use the expansion (6.7) to get

f(v)− f(U + z) =f ′(U) ·R+ (f ′(U + z) ·R− f ′(U) ·R) + f ′′(U + z,R) ·R2.

(3.78)

Define the renormalized variable εR,k by R(t, x) = λ
− d

2

k εR,k

(
t, x−αk

λk

)
eiθk . Then,

by (6.13) and (2.56),

Im〈f ′(U + z) ·R− f ′(U) ·R, η〉

≤ C

∫
(|U | 4d−1 + |z| 4d−1)|z||R||η|dx

≤ C(T − t)−4
K∑

k=1

∫
(e−δ|y| + |εz,k|

4
d−1)|εz,k||εR,k|(Mod+ |εz,k|

+ (T − t)υ∗+1)e−δ|y|dy + Ce−
δ

T−t

≤ C(T − t)−4
K∑

k=1

‖e−δ|y|εz,k‖L∞‖R‖L2(Mod+ ‖e−δ|y|εz,k‖L∞

+ (T − t)υ∗+1) + Ce−
δ

T−t

≤ Cα∗(T − t)m−1+ d
2D + Ce−

δ
T−t .(3.79)

Moreover, by (2.13), (2.50), (2.57), (3.59) and Mod ≤ C(T − t)2,

Im〈f ′′(U + z,R) ·R2, η〉 ≤C‖U + z‖
4
d−1

L4( 4
d
−1)

‖R‖2L8‖η‖L2 + C‖R‖
4
d+1

H1 ‖η‖L2

≤C(T − t)−2‖η‖L2D2 + C‖η‖L2‖R‖2H1 ≤ C(T − t)−2D2.(3.80)

Thus, combining (3.78), (3.79) and (3.80) and using Lemma 2.6 we obtain (3.77),
as claimed.

Next, in order to treat the remaining linear terms on the R.H.S. of (3.77), we

decompose η into four parts η =
∑4

l=1 ηl as in (2.58). Note that, by Lemma 2.6,
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(2.60) and (2.61),

| Im〈ΔRk − λ−2
k Rk + f ′(Uk) ·Rk, η2 + η3〉|

≤Cλ−4
k

4
d∑

j=1

∫
|∇εk|(|εz,k|j + |∇εz,k||εz,k|j−1)e−δ|y|dy + C

4
d∑

j=1

∫
|εk||εjz,k|e−δ|y|dy

+ Cλ−4
k

4
d∑

j=1

∫
|f ′(Qk)εk||Qk|1+

4
d−j |εz,k|jdy + Ce−

δ
T−t

≤Cλ−4
k ‖e−δ|y|(|εz,k|+ |∇εz,k|)‖L∞D + Ce−

δ
T−t ≤ Cα∗(T − t)m−3+ d

2 D + Ce−
δ

T−t ,

(3.81)

where the last step is due to (2.25). Moreover, by (2.62) and Lemma 2.9,

| Im〈ΔRk − λ−2
k Rk + f ′(Uk) ·Rk, η4〉|

≤ Cλ−2
k | Im〈∇εk,∇(λ−1

k ã1,k · ∇Qk + ã0,kQk)〉|

+ Cλ−2
k

∫
(|εk|+ |f ′(Qk)εk|)|λ−1

k ã1,k · ∇Qk + ã0,kQk|dy

≤ Cλυ∗−3
k (‖εk‖L2 + ‖∇εk‖L2) ≤ C(T − t)υ∗−3D.(3.82)

Hence, taking into account (2.59) and using Lemma 2.6 again we obtain

Im〈ΔRk − λ−2
k Rk + f ′(Uk) ·Rk, η〉

= λ−4
k Im〈Δεk − εk + f ′(Qk) · εk,Ψk〉

+O((α∗(T − t)m−3+ d
2 + (T − t)υ∗−3)D + e−

δ
T−t ),(3.83)

where Ψk is given by (2.12).
The analysis is now reduced to that of the inner product involving Ψk.
By the proximity Qk = Q+O(Pe−δ|y|) and the definition of linearized operators

in (6.1),

Im〈Δεk − εk + f ′(Qk) · εk,Ψk〉
= Im〈Δεk − εk + f ′(Q) · εk, Ψ̃k〉+O(PMod‖R‖L2)

= 〈L+εk,1, Ψ̃k,2〉 − 〈L−εk,2, Ψ̃k,1〉+O(PModD),(3.84)

where Ψ̃k is defined as in (2.12) with Q replacing Qk, εk,1 = Re εk, εk,2 = Im εk,2,

and Ψ̃k,1, Ψ̃k,2 are defined similarly. Then, by (2.12), (2.53) and the algebraic
identities in (6.3), we get

〈L+εk,1, Ψ̃k,2〉 =− (λkλ̇k + γk)〈εk,1, L+ΛQ〉
=2(λkλ̇k + γk) Re〈Uk, Rk〉+O(PMod‖R‖L2),(3.85)

〈L−εk,2, Ψ̃k,1〉 =− (λ2
kβk + γkβk)〈εk,2, L−Q〉+ 1

4
(λ2

kγ̇k + γ2
k)〈εk,2, L−|y|2Q〉

=2(λ2
kβk + γkβk)〈εk,2,∇Q〉 − (λ2

kγ̇k + γ2
k)〈εk,2,ΛQ〉

=O(PMod‖R‖L2 + e−
δ

T−t ‖R‖L2).(3.86)
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Hence, plugging (3.84), (3.85) and (3.86) into (3.83) we obtain

Im〈ΔRk − λ−2
k Rk + f ′(Uk) ·Rk, η〉

= 2λ−4
k (λkλ̇k + γk) Re〈Uk, Rk〉+O(((T − t)−3Mod

+ α∗(T − t)m−3+ d
2 + (T − t)υ∗−3)D + e−

δ
T−t ).(3.87)

Thus, combining (3.77) and (3.87) together we arrive at

I
(1)
t,7 = − 2

K∑
k=1

λ−4
k (λkλ̇k + γk) Re〈Uk, Rk〉

+O(((T − t)−3Mod+ α∗(T − t)m−3+ d
2

+ (T − t)υ∗−3)D + (T − t)−2D2 + e−
δ

T−t ).(3.88)

Finally, plugging estimates (3.60), (3.67), (3.70), (3.71), (3.76) and (3.88) into
(3.58) we obtain (3.57) and finish the proof of Lemma 3.6. �

Lemma 3.7 (Control of I (2)). Consider the situations as in Theorem 3.5. Then,
there exists C > 0 such that for all t ∈ [t∗, T∗],

dI (2)

dt
≥−

K∑
k=1

γk
4λ4

k

∫
Δ2χA(y)|εk|2dy +

K∑
k=1

γk
λ4
k

Re

∫
∇2χA(y)(∇εk,∇εk)dy

+

K∑
k=1

γk
λ4
k

Re

∫
∇χA(y) · ∇Qk f ′′(Qk) · εkdy − CAE ′

r,(3.89)

where

E ′
r = (

Mod

(T − t)3
+ α∗(T − t)m−2+ d

2 + (T − t)υ∗−2)D +
D2

(T − t)2
+ e−

δ
T−t .(3.90)

Proof. We compute as in [65, (5.48)],

dI (2)

dt
= −

K∑
k=1

λ̇kγk − λkγ̇k
2λ2

k

Im〈∇χA(
x− αk

λk
) · ∇R,Rk〉

+

K∑
k=1

γk
2λk

Im〈∂t(∇χA(
x− αk

λk
)) · ∇R,Rk〉

+

K∑
k=1

γk
2λ2

k

Im〈ΔχA(
x− αk

λk
)Rk, ∂tR〉

+
K∑

k=1

γk
2λk

Im〈∇χA(
x− αk

λk
) · (∇Rk +∇RΦk), ∂tR〉

=:
K∑

k=1

(I
(2)
t,k1 + I

(2)
t,k2 + I

(2)
t,k3 + I

(2)
t,k4).(3.91)

(i) Estimate of I
(2)
t,k1 and I

(2)
t,k2. Since | λ̇kγk−λkγ̇k

λ2
k

| ≤ Cλ−3
k Modk and

|∂t(∇χA(
x−αk

λk
))| ≤ CAλ−2

k (Mod+ P ), by (3.59),

|I (2)
t,k1 + I

(2)
t,k2| ≤CAλ−3

k (Mod+ P 2)‖∇R‖L2‖R‖L2 ≤ CA(T − t)−2D2.(3.92)
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(ii) Estimate of I
(2)
t,k3. We claim that

I
(2)
t,k3 = − γk

4λ4
k

Re

∫
Δ2χA(

x− αk

λk
)|Rk|2dx+

γk
2λ2

k

Re

∫
ΔχA(

x− αk

λk
)|∇Rk|2dx

− γk
2λ2

k

Re〈ΔχA(
x− αk

λk
)Rk, f

′(Uk) ·Rk〉

+O(A(T − t)−2D2 + ((T − t)−3Mod

+ α∗(T − t)m−2+ d
2 + (T − t)υ∗−2)D + e−

δ
T−t ).(3.93)

For this purpose, by (2.54) and (6.7),

I
(2)
t,k3 = − γk

2λ2
k

Re〈ΔχA(
x− αk

λk
)Rk,ΔR+ f ′(U + z) ·R(3.94)

+ f ′′(U + z,R) · R2 + (a1 · ∇+ a0)R+ η〉.

First, we have from [12, (3.67)] that

− γk
2λ2

k

Re〈ΔχA(
x− αk

λk
)Rk,ΔR〉

= − γk
4λ4

k

Re

∫
Δ2χA(

x− αk

λk
)|Rk|2dx

+
γk
2λ2

k

Re

∫
ΔχA(

x− αk

λk
)|∇Rk|2dx+O(A‖R‖2H1).(3.95)

Let us mention that an extra factor T − t is gained here from the decay properties
of the cut-off function, i.e., for |y| ≥ 2A,

|∇ΔχA(y)| ≤ CA|y|−2, |∂xkxl
χA(y)| ≤ CA|y|−1, 1 ≤ k, l ≤ d.(3.96)

Moreover, rewrite

Re〈ΔχA(
x− αk

λk
)Rk, f

′(U + z) ·R〉 =Re〈ΔχA(
x− αk

λk
)Rk, f

′(U) ·R〉+ ẽr,

where the difference

ẽr :=Re〈ΔχA(
x− αk

λk
)Rk, f

′(U + z) ·R− f ′(U) ·R〉.(3.97)

Then, by the bound ‖ΔχA‖L∞ ≤ C, (2.21) and (6.13),

|ẽr| ≤ C

∫
(|U | 4d−1 + |z| 4d−1)|z||R|2dx

≤ C((T − t)−
d
2 (

4
d−1) + ‖z‖

4
d−1

L∞ )‖z‖L∞‖R‖2L2

≤ C(T − t)−2D2.

This along with Lemma 2.6 yields that

(3.98) Re〈ΔχA(
x− αk

λk
)Rk, f

′(U + z) ·R〉

= Re〈ΔχA(
x− αk

λk
)Rk, f

′(Uk) ·Rk〉+O((T − t)−2D2 + e−
δ

T−t ).
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It also follows from (6.15), (2.13), (2.50) and D = O((T − t)2) that

| γk
2λ2

k

Re〈ΔχA(
x− αk

λk
)Rk, f

′′(U + z,R) ·R2〉|

≤ Cλ−1
k (‖R‖3L6‖U + z‖

4
d−1

L2( 4
d
−1)

+ ‖R‖
4
d+2

L
4
d
+2
)

≤ C(T − t)−2D2.(3.99)

Furthermore, by (2.57),

| γk
2λ2

k

Re〈ΔχA(
x− αk

λk
)Rk, a1 · ∇R+ a0R+ η〉|

≤Cλ−1
k (‖R‖L2‖∇R‖L2 + ‖R‖2L2) + Cλ−1

k ‖R‖L2‖η‖L2

≤C
(
(T − t)−2D2 + ((T − t)−3Mod+ α∗(T − t)m−2+ d

2 + (T − t)υ∗−2
)
D).

(3.100)

Hence, plugging (3.95), (3.98), (3.99) and (3.100) into (3.94) we obtain (3.93),
as claimed.

(iii) Estimate of I
(2)
t,k4. The estimate of I

(2)
t,k4 is similar to that of I

(2)
t,k3. We

claim that

I
(2)
t,k4 =

γk
λ2
k

Re

∫
∇2χA(

x− αk

λk
)(∇Rk,∇Rk)dx

− γk
2λ2

k

Re

∫
ΔχA(

x− αk

λk
)|∇Rk|2dx

− γk
λk

〈∇χA(
x− αk

λk
) · ∇Rk, f

′(Uk) ·Rk〉

+O(A(T − t)−2D2 +A((T − t)−3Mod

+ α∗(T − t)m−2+ d
2 + (T − t)υ∗−2)D).(3.101)

For this purpose, using (2.54) again and (6.7) we derive

I
(2)
t,k4 =− γk

2λk
Re〈∇χA(

x− αk

λk
) · (∇Rk +∇RΦk),

ΔR+ f ′(U + z) ·Rk + f ′′(U + z,R) ·R2 + (a1 · ∇+ a0)R+ η〉.
(3.102)

Similarly to (3.95), we have (see [12, (3.73)])

− γk
2λk

Re〈∇χA(
x− αk

λk
) · (∇Rk +∇RΦk),ΔR〉

=
γk
λ2
k

Re

∫
∇2χA(

x− αk

λk
)(∇Rk,∇Rk)−

γk
2λ2

k

ΔχA(
x− αk

λk
)|∇Rk|2dx

+O
(
A(T − t)−2D2

)
.(3.103)

We note that the second order terms ∂xkxl
R are cancelled by the integration by

parts formula. For the detailed computations we refer to [65, (5.66)].
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Moreover, as in (3.97), rewrite

γk
2λk

Re〈∇χA(
x− αk

λk
) · (∇Rk +∇RΦk), f

′(U + z) ·R〉

=
γk
λk

Re〈∇χA(
x− αk

λk
) · ∇Rk, f

′(Uk) ·Rk〉+ êr +O(Ae−
δ

T−t ),(3.104)

where the last step is due to Lemma 2.6 and the error term is of form

êr :=
γk
λk

Re〈∇χA(
x− αk

λk
) · (∇Rk +∇RΦk), f

′(U + z) ·R− f ′(U) ·R〉.

We use the bound ‖∇χA‖L∞ ≤ CA, (2.21), (2.25) and (6.13) to bound

|êr| ≤ CA

∫
(|∇R|+ |R|)(|U | 4d−1 + |z| 4d−1)|z||R|dx

≤ CA(
K∑

k=1

(T − t)−2‖e−δ|y|εz,k‖L∞ + ‖z‖
4
d

L∞)

∫
(|∇R|+ |R|)|R|dx+ CAe−

δ
T−t

≤ CA(α∗(T − t)m−1+ d
2 + α∗)(T − t)−1D2 + CAe−

δ
T−t

≤ CA((T − t)−1D2 + e−
δ

T−t ).

(3.105)

Plugging this into (3.104) yields that

− γk
2λk

Re〈∇χA(
x− αk

λk
) · (∇Rk +∇RΦk), f

′(U + z) ·R〉

=− γk
λk

Re〈∇χA(
x− αk

λk
) · ∇Rk, f

′(Uk) ·Rk〉+O(A(T − t)−1D2 +Ae−
δ

T−t ).

(3.106)

For the remaining inner products in (3.102), by (2.13) and (2.50),

| γk
2λk

Re〈∇χA(
x− αk

λk
) · (∇Rk +∇RΦk), f

′′(U + z,R) ·R2 + a1 · ∇R + a0R〉|
(3.107)

≤ CA(T − t)−2+ d
2 (‖∇R‖L2‖R‖2L4 + ‖R‖3L3)

(3.108)

+ CA(‖∇R‖L2‖R‖
4
d+1

L2( 4
d
+1)

+ ‖R‖
4
d+2

L
4
d
+2
) + CA‖R‖2H1 .

Then, by (2.50), the R.H.S. above can be bounded by, up to a universal constant
CA,

(T − t)−2+ d
2 ((T − t)−

d
2−1 + (T − t)−

d
2 )D3

+ ((T − t)−3 + (T − t)−2)D
4
d+2 + (T − t)−2D2

≤ (T − t)−3D3 + (T − t)−3D2+ 4
d + (T − t)−2D2 ≤ (T − t)−2D2.(3.109)
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The last inner product involving η can be bounded easier than the previous I
(1)
t,7

in I (1). By (2.57),

| γk
2λk

Re〈∇χA(
x− αk

λk
) · (∇Rk +∇RΦk), η〉|

≤CA‖R‖H1‖η‖L2 ≤ CA((T − t)−3Mod+ α∗(T − t)m−2+ d
2 + (T − t)υ∗−2)D.

(3.110)

Hence, we conclude from (3.103), (3.106), (3.109) and (3.110) that (3.101) holds.
Now, putting the estimates (3.92), (3.93) and (3.101) altogether and using the

renormalized variable εk in (2.52) we arrive at

dI (2)

dt
=−

K∑
k=1

γk
4λ4

k

∫
Δ2χA(y)|εk|2dy +

K∑
k=1

γk
λ4
k

Re

∫
∇2χA(y)(∇εk,∇εk)dy

−
K∑

k=1

Re〈 γk
2λ4

k

ΔχA(y)εk +
γk
λ4
k

∇χA(y) · ∇εk, f
′(Qk) · εk〉+O(AE ′

r),

where E ′
r is given by (3.90). Taking into account the identity

−
K∑

k=1

Re〈 γk
2λ4

k

ΔχA(
x− αk

λk
)εk +

γk
λ4
k

∇χA(
x− αj

λk
) · ∇εk, f

′(Qk) · εk〉

=
K∑

k=1

γk
λ4
k

Re

∫
∇χA(y) · ∇Qk f ′′(Qk) · ε2kdy,(3.111)

we thus obtain (3.89), thereby finishing the proof of Lemma 3.7. �

We are now in position to prove Theorem 3.5.

Proof of Theorem 3.5. Combining (3.57) and (3.89) altogether and then using the
renormalized variable εk in (2.52) we obtain that if εk,1 := Re εk and εk,2 := Im εk,
1 ≤ k ≤ K,

dI

dt
≥

K∑
k=1

γk
λ4
k

(∫
∇2χA(y)(∇εk,∇εk)dy +

∫
|εk|2dy

−
∫
(1 +

4

d
)|Qk|

4
d ε2k,1 + |Qk|

4
d−2Qk

2
ε2k,2dy − 1

4

∫
Δ2χA(y)|εk|2dy

+Re

∫
(∇χA(y)− y) · ∇Qk (f ′′(Qk) · ε2k)dy

)
− CAEr.

(3.112)

Then, arguing as in the proof of [12, (3.83)] we obtain that for A large enough,

dI

dt
≥ C

K∑
k=1

γk
λ4
k

∫
|∇εk|2e−

|y|
A + |εk|2dy +O(

K∑
k=1

γk
λ4
k

Scal(εk) + Er).(3.113)

Thus, using the inequality (see [12, (3.87)])

K∑
k=1

Scal(εk) ≤C
K∑

k=1

(M2
k + ‖R‖4L2 + P 2‖R‖2L2 + e−

δ
T−t ),(3.114)

we arrive at (3.55). Therefore, the proof is complete. �
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Below we will fix a large constant A such that Theorem 3.5 is valid.

4. Construction of multi-bubble Bourgain-Wang solutions

In this section we construct the multi-bubble Bourgain-Wang solutions to (1.1)
and derive several properties which will be used in the conditional uniqueness part
in Section 5 later.

Throughout this section, we will take ε, α∗ sufficiently small and t close to T
such that

C((ε+ α∗)
1
2 + (1 + max

1≤k≤K
|xk|)(T − t)

d
8+4d ) ≤ 1

2
,(4.1)

where C is a universal constant, independent of ε, α∗ and larger than the constants
in the estimates in this section. Let us mention that the exponent d/(8 + 4d) is
used in the derivation of (4.61). For the construction of blow-up solutions, it will
be sufficient to take the exponent 1/4.

Let us start with the bootstrap estimates of the remainder and geometrical pa-
rameters, which are the key towards the derivation of uniform estimates of solutions.

4.1. Bootstrap estimates. Given any υ∗ ≥ 5, m ≥ 3 if d = 2 and m ≥ 4 if d = 1,
set

κ := (m+
d

2
− 1) ∧ (υ∗ − 2), so κ ≥ 3.(4.2)

Proposition 4.1 (Bootstrap estimates). Suppose that there exists t∗ ∈ (0, T∗)
such that u admits the unique geometrical decomposition (2.1) on [t∗, T∗] and the
following estimates hold:

(i) For the remainder,

‖R(t)‖L2 ≤ (T − t)κ+1, ‖∇R(t)‖L2 ≤ (T − t)κ.(4.3)

(ii) For the modulation parameters, 1 ≤ k ≤ K,

|λk(t)− wk(T − t)|+ |γk(t)− w2
k(T − t)| ≤ (T − t)κ,(4.4)

|αk(t)− xk|+ |βk(t)| ≤ (T − t)
κ
2 +

1
2 ,(4.5)

|θk(t)− (w−2
k (T − t)−1 + ϑk)| ≤ (T − t)κ−2.(4.6)

Then, there exists t∗ ∈ [0, t∗) such that the decomposition (2.1) and the following
improved estimates hold on the larger interval [t∗, T∗]: for 1 ≤ k ≤ K,

‖R(t)‖L2 ≤ 1/2(T − t)κ+1, ‖∇R(t)‖L2 ≤ 1/2(T − t)κ,(4.7)

|λk(t)− wk(T − t)|+ |γk(t)− w2
k(T − t)| ≤ 1/2(T − t)κ,(4.8)

|αk(t)− xk|+ |βk(t)| ≤ 1/2(T − t)
κ
2 +

1
2 ,(4.9)

|θk(t)− (w−2
k (T − t)−1 + ϑk)| ≤ 1/2(T − t)κ−2.(4.10)

Remark 4.2. Since κ ≥ 3,

λk, γk, P ≈ (T − t), |βk|+ |αk − xk|+D = O((T − t)2),(4.11)

where the implicit constants are independent of ε, α∗. Hence, the results in Sections
2 and 3 are all valid. Moreover, since κ = (m+ d

2 − 1) ∧ (υ∗ − 2), we have

(T − t)m+ d
2 + (T − t)υ∗−1 ≤ C(T − t)κ+1.(4.12)
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In order to prove Proposition 4.1, by the continuity of Jacobian matrix, the
local well-posedness theory of (1.1) and C1-regularity of modulation parameters,
we may take t∗(< t∗) close to t∗, such that the decomposition (2.1) and the following
estimates hold on the larger interval [t∗, T∗]:

‖R(t)‖L2 ≤ 2(T − t)κ+1, ‖∇R(t)‖L2 ≤ 2(T − t)κ,(4.13)

|λk(t)− wk(T − t)|+ |γk(t)− w2
k(T − t)| ≤ 2(T − t)κ,(4.14)

|αk(t)− xk|+ |βk(t)| ≤ 2(T − t)
κ
2 +

1
2 ,(4.15)

|θk(t)− (w−2
k (T − t)−1 + ϑk)| ≤ 2(T − t)κ−2.(4.16)

By virtue of Theorems 2.3, 3.1, 3.4 and 3.5 we obtain

Lemma 4.3. There exists C > 0 such that for any t ∈ [t∗, T∗],

Mk ≤ Cα∗(T − t)κ+1,(4.17)

Mod ≤ Cα∗(T − t)κ+1,(4.18)

|λkλ̇k + γk| ≤ C(T − t)κ+2,(4.19)

and for the errors Er and Er in (3.31) and (3.56), respectively,

|Er| ≤ Cα∗(T − t)κ−1,(4.20)

|Er| ≤ C(ε+ α∗)(T − t)2κ−1 + C(T − t)2κ.(4.21)

Remark 4.4. In comparison with (4.18), one more factor (T − t) is gained in (4.19)

for the particular modulation equation λkλ̇k + γk. This fact is important to derive
(4.21) and to close the bootstrap estimates of remainder.

We are now in position to prove the bootstrap estimates in Proposition 4.1.

Proof of Proposition 4.1.

(i) Estimate of R. On one hand, by (6.14), we see that

|
∫

F ′′(U + z,R) ·R2dx−
∫

F ′′(U,R) ·R2dx|

≤C

∫
(|U | 4d−1 + |R| 4d−1 + |z| 4d−1)|z||R|2dx

≤C((T − t)−
d
2 (

4
d−1)‖z‖L∞‖R‖2L2 + ‖z‖

4
d

L∞‖R‖2L2 + ‖z‖L∞‖R‖1+
4
d

L1+ 4
d
)

≤C(α∗(T − t)−2+ d
2D2 + α∗(T − t)−d( 2

d−
1
2 )D1+ 4

d ) = o((T − t)−2D2).(4.22)

Taking into account F ′′(U,R) ·R2 = F (U +R)− F (U)− Re(f(U)R) we thus get

I =
1

2

∫
|∇R|2 + 1

2

K∑
k=1

∫
1

λ2
k

|R|2Φkdx− Re

∫
F (U +R)− F (U)− f(U)Rdx

+

K∑
k=1

γk
2λk

Im

∫
∇χA(

x− αk

λk
) · ∇RRΦkdx+ o((T − t)−2D2).(4.23)
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Then, we use the expansion (6.9), to derive

I =
1

2
Re

∫
|∇R|2 +

K∑
k=1

1

λ2
k

|R|2Φk − (1 +
2

d
)|U | 4d |R|2 − 2

d
|U | 4d−2U2R

2
dx

+O(

2+ 4
d∑

j=3

∫
|U | 4d+2−j |R|jdx+ ‖R‖L2‖∇R‖L2) + o((T − t)−2D2).(4.24)

Note that the last second line on the R.H.S. above is of order o((T − t)−2D2), see
[12, (4.29)], while for the quadratic terms the following coercivity type estimate
holds (see [12, (3.39)]):

1

2
Re

∫
|∇R|2 +

K∑
k=1

1

λ2
k

|R|2Φk − (1 +
2

d
)|U | 4d |R|2 − 2

d
|U | 4d−2U2R

2
dx

≥C
D2(t)

(T − t)2
+O(

K∑
k=1

M2
k

(T − t)2
+ e−

δ
T−t ),(4.25)

where C > 0. Thus, by (4.24) and (4.25), for t close to T ,

I ≥C

2

D2

(T − t)2
− C(

K∑
k=1

M2
k

(T − t)2
+ e−

δ
T−t ).(4.26)

On the other hand, Theorem 3.5 yields that for any t ∈ [t∗, T∗],

dI

dt
≥ −CEr.(4.27)

Thus, we infer from (4.26), (4.27) and the boundary condition I (T∗) = 0 that
for any t ∈ [t∗, T∗],

D ≤ C((T − t)(

∫ T

t

|Er|ds)
1
2 +

K∑
k=1

|Mk|+ e−
δ

T−t ).(4.28)

Taking into account (4.1), (4.17) and (4.21) we then obtain

D ≤C
(
(ε+ α∗)

1
2 (T − t)κ+1 + (T − t)κ+

3
2 + α∗(T − t)κ+1

)
≤ 1

2
(T − t)κ+1.

(4.29)

Thus, estimate (4.7) is verified.
(ii) Estimates of λk and γk. By (4.18),

| d
dt

(
γk
λk

)
| = |λ2

kγ̇k − λkλ̇kγk|
λ3
k

≤ 2
Mod

λ3
k

≤ Cα∗(T − t)κ−2,(4.30)

which along with the boundary condition ( γk

λk
)(T∗) = wk yields that

|γk
λk

− wk| ≤
∫ T∗

t

| d
dr

(
γk
λk

)
|dr ≤ Cα∗(T − t)κ−1.(4.31)
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This in turn yields that

| d
dt
(λk − wk(T − t))| = |λ̇k +

γk
λk

+ wk −
γk
λk

|

≤ Mod

λk
+ Cα∗(T − t)κ−1 ≤ Cα∗(T − t)κ−1,

and thus, by (4.1),

|λk − wk(T − t)| ≤
∫ T∗

t

| d
dr

(λk − wk(T − r))|dr ≤ Cα∗(T − t)κ ≤ 1

2
(T − t)κ.

(4.32)

Hence, we prove the estimate of λk in (4.8).
Regarding γk, by (4.18) and (4.31),

| d
dt
(γk − w2

k(T − t))| = |γ̇k +
γ2
k

λ2
k

+ w2
k −

γ2
k

λ2
k

|

≤ Mod

λ2
k

+ C|wk −
γk
λk

| ≤ Cα∗(T − t)κ−1.

Thus, taking into account γk(T∗) = ω2
k(T − T∗) and (4.1) we get

|γk(t)− w2
k(T − t)| ≤

∫ T∗

t

| d
dr

(γk(r)− w2
k(T − r))|dr ≤ Cα∗(T − t)κ ≤ 1

2
(T − t)κ.

(4.33)

This gives the estimate of γk in (4.8).
(iii) Estimates of βk and αk. By the improved estimates (3.30), (4.20) and

(4.31),

|βk|2
λ2
k

≤ C(

K∑
k=1

|wk − γk
λk

|+ Er) ≤ Cα∗(T − t)κ−1,(4.34)

so we get that |βk| ≤ C(α∗)
1
2 (T − t)

κ
2 +

1
2 ≤ 1

2 (T − t)
κ
2 +

1
2 , which along with (4.18)

yields that

|α̇k| = |λkα̇k − 2βk

λk
+

2βk

λk
| ≤ Mod

λk
+

2|βk|
λk

≤ Cα∗(T − t)
κ
2 −

1
2 .(4.35)

Integrating both sides and using (4.1) and the boundary condition αk(T∗) = xk we
get

|αk(t)− xk| ≤
∫ T∗

t

|α̇k(r)|dr ≤ Cα∗(T − t)
κ
2 +

1
2 ≤ 1

2
(T − t)

κ
2 +

1
2 ,(4.36)

thereby proving the estimate of αk in (4.9).
(iv) Estimate of θk. It remains to estimate θk. By (4.11), (4.18), (4.32) and

(4.34),

| d
dt
(θk − w−2

k (T − t)−1 + ϑk)| = |λ
2
kθ̇k − 1− |βk|2

λ2
k

+
|βk|2
λ2
k

+
1

λ2
k

− 1

w2
k(T − t)2

|

≤ Mod

λ2
k

+
|βk|2
λ2
k

+
|λk − wk(T − t)||λk + wk(T − t)|

w2
kλ

2
k(T − t)2

≤ Cα∗(T − t)κ−3,

(4.37)
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which along with (4.1) and the boundary θk(T∗) = w−2
k (T −T∗)

−1 +ϑk yields that

|θk − (w−2
k (T − t)−1 + ϑk)| ≤

∫ T∗

t

| d
dr

(θ − w−2
k (T − r)−1 + ϑk)|dr ≤ 1

2
(T − t)κ−2.

(4.38)

Hence, the estimate (4.10) is verified. Therefore, the proof of Proposition 4.1 is
complete. �

4.2. Proof of existence. We are now in position to prove the existence part in
Theorem 1.2. Consider the approximating solutions vn satisfying the equation

(4.39)

⎧⎪⎪⎨⎪⎪⎩
i∂tvn +Δvn + a1 · ∇vn + a0vn + |vn|

4
d vn = 0,

vn(tn) =

K∑
k=1

Sk(tn) + z(tn),

where {tn} is any increasing sequence converging to T , the coefficients a1, a0 are
given by (1.2) and (1.3), respectively, {Sk} are the pseudo-conformal blow-up so-
lutions defined in (1.20), and z solves equation (1.21). By virtue of bootstrap
estimates, we have the key uniform estimates below.

Lemma 4.5 (Uniform estimates). There exists t∗ ∈ [0, T ) such that for n large
enough, vn admits the unique geometrical decomposition vn = Un + z + Rn as in
(2.1), with the parameters Pn,k := (λn,k, αn,k, βn,k, γn,k, θn,k), 1 ≤ k ≤ K, and the
estimates (4.3)-(4.6) hold on [t∗, tn]. Moreover, there exists C > 0 such that

sup
n

‖Rn(t)‖Σ ≤ C(T − t)κ,(4.40)

sup
n

‖xvn‖C([t∗,tn];L2) ≤ C(1 + max
1≤k≤K

|xk|)2.(4.41)

Proof. The proof of the existence of a universal time t∗ and uniform estimates
(4.3)-(4.6) is similar to that of [64, Theorem 5.1], mainly based on the bootstrap
estimates in Proposition 4.1 and bootstrap arguments (see, e.g., [67, Proposition
1.21]). Thus, the details are omitted here for simplicity. Below let us mainly prove
estimates (4.40) and (4.41).

Let M := 1 + max1≤k≤K |xk|. Let ϕ(x) ∈ C1(Rd,R) be a radial cutoff function
such that ϕ(x) = 0 for |x| ≤ r, and ϕ(x) = (|x| − r)2 for |x| > r, where r =

2max1≤k≤K{|xk|, 1}. Note that, |∇ϕ| ≤ Cϕ
1
2 for a universal constant C > 0.

Let wn := Un +Rn, n ≥ 1. Then, vn = wn + z. By equations (4.39) and (1.21),
wn solves equation

(4.42)

⎧⎪⎪⎨⎪⎪⎩
i∂twn +Δwn + a1 · ∇wn + a0wn + f(vn)− f(z) = 0,

wn(tn) =
K∑

k=1

Sk(tn) (=: S(tn)).
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Then, by the integration by parts formula and Im wnf(wn) = 0,

d

dt

∫
|wn|2ϕdx

= Im

∫
(2wn∇wn + a1|wn|2) · ∇ϕ+ 2wn(f(vn)− f(wn)− f(z))ϕdx

= Im

∫
(2wn∇wn + a1|wn|2) · ∇ϕdx+O(

4/d∑
j=1

∫
|w2+ 4

d−j
n zjϕ|dx).(4.43)

In order to estimate the R.H.S. of (4.43), we note that

| Im
∫
(2wn∇wn + a1|wn|2) · ∇ϕdx|

≤ C

∫
|x−xk|≥1,1≤k≤K

(
|wn||∇wn|+ |wn|2

)
ϕ

1
2 dx

≤ C((

∫
|x−xk|≥1,1≤k≤K

|∇wn|2dx)
1
2

+ (

∫
|x−xk|≥1,1≤k≤K

|wn|2dx)
1
2 )(

∫
|wn|2ϕdx)

1
2 ,(4.44)

where C > 0 is independent of n. By (2.1), (4.3) and (1.7),

|
∫
|x−xk|≥1,1≤k≤K

|wn(t)|2 + |∇wn(t)|2dx| ≤ C(‖Rn(t)‖2H1 + e−
δ

T−t ) ≤ C(T − t)2κ.

(4.45)

This yields that for a universal constant C > 0,

| Im
∫
(2wn∇wn + a1|wn|2) · ∇ϕdx| ≤ C(T − t)κ(

∫
|wn|2ϕdx)

1
2 .(4.46)

Moreover, for 1 ≤ j ≤ 4
d , since suppϕ ⊆ {x : |x− xk| ≥ 1, 1 ≤ k ≤ K},∫

|w2+ 4
d−j

n zjϕ|dx ≤ (

∫
|wn|2ϕdx)

1
2 (

∫
|wn|2+

8
d−2j |z|2jϕdx) 1

2

≤ C(

∫
|wn|2ϕdx)

1
2 (

∫
(|Un|2+

8
d−2j + |Rn|2+

8
d−2j)|z|2jϕdx) 1

2

≤ C(

∫
|wn|2ϕdx)

1
2 (‖Rn‖

2+ 8
d−2j

L2(2+ 8
d
−2j)

‖xz‖2L4‖z‖2j−2
L∞ +M2e−

δ
T−t ),

which along with (2.21), (2.24), (4.1) and (4.7) yields that for a universal constant
C > 0, ∫

|w2+ 4
d−j

n zjϕ|dx ≤ C(T − t)2κ (

∫
|wn|2ϕdx )

1
2 .(4.47)

Hence, plugging (4.46) and (4.47) into (4.43) we get

| d
dt

∫
|wn(t)|2ϕdx| ≤C(T − t)κ (

∫
|wn(t)|2ϕdx )

1
2 .(4.48)

Thus, integrating (4.48) from t to tn, using (4.1) and the boundary estimate∫
|wn(tn)|2ϕdx =

∫
|

K∑
k=1

Sk(tn)|2ϕdx ≤ CM2e−
δ

T−tn ≤ CM2e−
δ

T−t ,(4.49)
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we obtain for t ∈ [0, tn], ∫
|wn(t)|2ϕdx ≤ C(T − t)2κ+2.(4.50)

In particular, this yields that∫
|Rn(t)|2ϕdx ≤C(

∫
|Un(t)|2ϕdx+

∫
|wn(t)|2ϕdx) ≤ C(T − t)2κ+2.(4.51)

Since ϕ(x) ≥ 1
4 |x|2 for |x| ≥ 4M , by (4.1), (4.7) and (4.51),

(4.52)

∫
|xRn(t)|2dx ≤ C(

∫
|Rn(t)|2ϕdx+M2

∫
|Rn(t)|2dx)

≤ CM2(T − t)2κ+2 ≤ C(T − t)2κ+1,

where C is independent of n and M . This along with (4.3) yields (4.40). Similarly,
we derive that∫

|xvn(t)|2dx ≤ C(

∫
|xwn|2dx+ ‖xz‖L2)2

≤ C(

∫
|wn(t)|2ϕdx+M2‖wn‖2L2 + ‖xz‖2L2)

≤ C((T − t)2κ+2 +KM2‖Q‖2L2 +M2(T − t)2κ+2 + ‖xz‖2L2)

≤ CM2,(4.53)

where the last step is due to (2.24), (4.3), (4.50) and the conservation law of mass,
and C is independent of n. This yields (4.41). Therefore, the proof of Lemma 4.5
is complete. �

Proof of existence part in Theorem 1.2. Let α∗, ε be small enough such that (4.1)
holds and tn as in Lemma 4.5. Let M := 1 + max1≤k≤K |xk|. By Lemma 4.5,
{vn(t∗)} are uniformly bounded in Σ, and thus up to a subsequence (still denoted
by {n}), vn(t∗) converges weakly to some v∗ ∈ Σ. The weak convergence indeed
can be enhanced to the strong one in the space L2, i.e.,

vn(t∗) → v∗, in L2, as n → ∞.(4.54)

This is due to the uniform integrability of {vn(t∗)} implied by the uniform estimate
(4.41):

sup
n≥1

‖vn(t∗)‖L2(|x|>A) ≤
1

A
sup
n≥1

‖xvn(t∗)‖L2(|x|>A) ≤
CM2

A
→ 0, as A → ∞.

(4.55)

Thus, the L2 local well-posedness theory (see, e.g. [3]) yields a unique L2-solution
vc to (1.1) on [t∗, T ), satisfying that vc(t∗) = v∗ and

lim
n→∞

‖vn − vc‖C([t∗,t];L2) = 0, t ∈ [t∗, T ).(4.56)

Moreover, since v∗ ∈ Σ, the local well-posedness result also yields vc ∈ C([t∗, t]; Σ)
for t ∈ (t∗, T ).

Next, we show that vc is the desired multi-bubble Bourgain-Wang solution to
(1.1). Let

(λ0,k, α0,k, β0,k, γ0,k, θ0,k) := (wk(T − t), xk, 0, w
2
k(T − t), w−2

k (T − t)−1 + ϑk)
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and Pn,k := (λn,k, αn,k, βn,k, γn,k, θn,k) be the parameters corresponding to the
geometrical decomposition of vn. Then, analogous computations as in [64] and
estimates (4.3)-(4.6) yield, for κ ≥ 1,

‖Un − S‖L2 ≤ C(T − t)
1
2 (κ−1),(4.57)

which along with (4.56) yields that

‖vc(t)− S(t)− z(t)‖L2 ≤ lim
n→∞

(‖Un(t)− S(t)‖L2 + ‖Rn(t)‖L2) ≤ C(T − t)
1
2 (κ−1).

(4.58)

Moreover, as in [65],

‖Un − S‖Σ ≤ CM(T − t)
1
2 (κ−3),(4.59)

which, via (4.40), yields that

‖vn(t)− S(t)− z(t)‖Σ ≤ ‖Un(t)− S(t)‖Σ + ‖Rn(t)‖Σ ≤ CM(T − t)
1
2 (κ−3).

(4.60)

Hence, possibly selecting a further subsequence (still denoted by {n}) and using
(4.56) we obtain

vn(t)− S(t)− z(t) ⇀ vc(t)− S(t)− z(t), weakly in Σ, as n → ∞,

which yields that

‖vc(t)− S(t)− z(t)‖Σ ≤ lim inf
n→∞

‖vn(t)− ST (t)− z(t)‖Σ ≤ CM(T − t)
1
2 (κ−3).

Therefore, the proof of existence part in Theorem 1.2 is complete. �

4.3. Further properties. We close this section with further properties of the
constructed multi-bubble Bourgain-Wang solutions in Theorem 1.2, which will be
used in Section 5 later.

Proposition 4.6 (H
3
2 boundedness). Consider the situations as in Theorem 1.2.

Then,

‖Rn(t)‖
H

3
2
≤ (T − t)κ−2, t ∈ [t∗, tn),(4.61)

where κ := (m+ d
2 − 1) ∧ (υ∗ − 2).

Proof. Set M := 1 + max1≤j≤K |xj |. Rewrite equation (2.54):

i∂tRn +ΔRn + (a1 · ∇+ a0)Rn = −ηn − f(Rn)− (f(vn)− f(Un + z)− f(Rn)),

(4.62)

where Rn(tn) = 0 and ηn is given by (2.55). Applying 〈∇〉 3
2 to both sides of (4.62)

yields

i∂t(〈∇〉 3
2Rn) + Δ(〈∇〉 3

2Rn) + (a1 · ∇+ a0)(〈∇〉 3
2Rn)

= [a1 · ∇+ a0, 〈∇〉 3
2 ]Rn − 〈∇〉 3

2 ηn − 〈∇〉 3
2 f(Rn)

− 〈∇〉 3
2 (f(vn)− f(Un + z)− f(Rn)) ,(4.63)
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where [a1 · ∇+ a0, 〈∇〉 3
2 ] is the commutator (a1 · ∇+ a0)〈∇〉 3

2 − 〈∇〉 3
2 (a1 · ∇+ a0).

Then, the Strichartz and local smoothing estimates yield

‖Rn‖
C([t,tn];H

3
2 )

(4.64)

≤ C

(
‖[a1 · ∇+ a0, 〈∇〉 3

2 ]Rn‖
L2(t,tn;H

− 1
2

1 )

+ ‖〈∇〉 3
2 (f(Rn))‖

L
4+2d
4+d (t,tn;L

4+2d
4+d )

+ ‖〈∇〉 3
2 ηn‖

L
4+2d
4+d (t,tn;L

4+2d
4+d )

+ ‖〈∇〉 3
2 (f(un)− f(Un + z)− f(Rn))‖

L2(t,tn;H
− 1

2
1 )

)
=:

4∑
l=1

Jl.

To estimate the R.H.S. above, by the calculus of pseudo-differential operators,
(1.13) and (4.7),

J1 ≤ C‖Rn‖L2(t,tn;H1
−1)

≤ C(T − t)
1
2 ‖Rn‖C([t,tn];H1) ≤ C(T − t)κ+

1
2 .(4.65)

Moreover, similarly to [65, (7.8)], by the product rule, Sobolev’s embedding and
(4.3),

‖〈∇〉 3
2 (f(Rn))‖

L
4+2d
4+d

≤ C‖Rn‖
4
d

H1‖Rn‖
H

3
2
≤ C(T − t)

4
dκ‖Rn‖

H
3
2
,(4.66)

which yields that

J2 ≤ C(T − t)
4
dκ+

4+d
4+2d ‖Rn‖

C([t,tn];H
3
2 )
.(4.67)

Regarding J3, we use the decomposition ηn =
∑4

l=1 ηl as in (2.58) to derive that

for p := 4+2d
4+d and any multi-index |υ| ≤ 2, by (2.59) and (4.18),

‖∂υ
xη1‖Lp(t,tn;Lp) ≤ C

K∑
k=1

λ
1
p

k λ
−2−|υ|+d( 1

p−
1
2 )

k Mod ≤ Cα∗(T − t)κ−2+ d
4+2d .(4.68)

Moreover, by (2.60), (2.25) and (4.12)

‖∂υ
xη2‖Lp(t,tn;Lp) ≤ C(T − t)

1
p−4+ d

2+d

∑
|υ|≤2

K∑
k=1

‖e−δ|y|∂υ
y εz,k‖L∞ + Ce−

δ
T−t(4.69)

≤ C(T − t)κ−1.

Note that, because η3 contains the interactions between different blow-up profiles,
by Lemma 2.6,

‖∂υ
xη3‖Lp(t,tn;Lp) ≤ Ce−

δ
T−t .(4.70)

At last, by (2.62), (2.47), (2.48) and (4.12), we get

‖∂υ
xη4‖Lp(t,tn;Lp) ≤C(T − t)υ∗−2+ d

4+2d ≤ C(T − t)κ+
d

4+2d .(4.71)

Hence, we conclude that

J3 ≤ ‖ηn‖
L

4+2d
4+d (t,tn;H

2, 4+2d
4+d )

≤ C(T − t)κ−2+ d
4+2d .(4.72)
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It remains to estimate the last term J4. We estimate

J4 ≤ C‖〈x〉(f(vn)− f(Un + z)− f(Rn))‖L2(t,tn;H1)

≤ C

4/d∑
j=1

(
‖〈x〉(|Un|1+

4
d−j + |z|1+ 4

d−j)|Rn|j‖L2(t,tn;L2)

+ ‖〈x〉(|∇Un|+ |∇z|)(|Un|
4
d−j + |z| 4d−j)|Rn|j‖L2(t,tn;L2)

+ ‖〈x〉(|Un|1+
4
d−j + |z|1+ 4

d−j)|∇Rn||Rn|j−1‖L2(t,tn;L2)

)
.(4.73)

Note that, by (2.21) and (2.24),

‖〈x〉|z|1+ 4
d−j |Rn|j‖L2(t,tn;L2) ≤ (T − t)

1
2 ‖〈x〉z‖L2‖z‖

4
d−j

L∞ ‖R‖jC([t,tn];H1)

≤ C(T − t)κj+
1
2 .

Since ‖〈x〉∇Un‖L∞ ≤ CM(T − t)−
d
2−1 and ‖∇Un‖L∞ ≤ C(T − t)−

d
2 , by (2.24) and

(4.3),

‖〈x〉(|∇Un||z|
4
d−j + |∇z||Un|

4
d−j + |∇z||z| 4d−j)|Rn|j‖L2(t,tn;L2)

≤ C

(
M(T − t)−

d
2−

1
2 ‖z‖

4
d−j

L∞(t,tn;L∞)‖R‖jC([t,tn];H1)

+ (T − t)−
d
2 (

4
d−j)+ 1

2 ‖〈x〉∇z‖L∞(t,tn;H1)‖R‖jC([t,tn];H1)

+ (T − t)
1
2 ‖〈x〉∇z‖L∞(t,tn;H1)‖z‖

4
d−j

L∞(t,tn;L∞)‖R‖jC([t,tn];H1)

)
≤ C(M(T − t)−

d
2−

1
2+κj + (T − t)−2+ d

2 j+
1
2+κj + (T − t)

1
2+κj)

≤ CM(T − t)κ−
3
2 .

Moreover,

‖〈x〉|z|1+ 4
d−j |∇Rn||Rn|j−1‖L2(t,tn;L2)

≤ C(T − t)
1
2 ‖〈x〉z‖L∞(t,tn;H1)‖z‖

4
d−j

L∞(t,tn;L∞)‖R‖jC([t,tn];H1)

≤ C(T − t)
1
2+κ.

The remaining terms in (4.73) only involve Un and Rn and can be bounded by, as
in [65],

CM((T − t)κ−
3
2 + (T − t)κ−

3
2 ‖R‖

C([t,tn];H
3
2 )
).

Thus, we conclude that

J4 ≤ CM((T − t)κ−
3
2 + (T − t)κ−

3
2 ‖Rn‖

C([t,tn];H
3
2 )
).(4.74)

Therefore, estimates (4.64), (4.65), (4.67), (4.72) and (4.74) altogether yield that

‖Rn‖
C([t,tn];H

3
2 )

≤ CM((T − t)κ−2+ d
4+2d + (T − t)κ−

3
2 ‖Rn‖

C([t,tn];H
3
2 )
),(4.75)

which along with (4.1) yields (4.61). �
As a consequence of Proposition 4.6 and the uniform estimates (4.3)-(4.6), the

asymptotic behavior (1.19) can be taken in the more regular space Ḣ
3
2 . Since the

proof is similar to that of [65, Proposition 7.2], it is omitted here for simplicity.
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Corollary 4.7. Consider the situation as in Proposition 4.6 with υ∗ ≥ 6, m ≥ 4
if d = 2 and m ≥ 5 if d = 1. Then, we have

‖vn(t)− S(t)− z(t)‖
Ḣ

3
2
≤ C(T − t)

κ
2 −2,(4.76)

where κ = (m+ d
2 − 1)∧ (υ∗− 2). In particular, for vc constructed in Theorem 1.2,

we have

‖vc(t)− S(t)− z(t)‖
Ḣ

3
2
≤ C(T − t)

κ
2 −2,(4.77)

and the strong H1 convergence holds: for any t ∈ (t∗, T ),

‖vn − vc‖C([t∗,t];H1) → 0, as n → ∞.(4.78)

The constructed blow-up solution vc actually admits the geometrical decompo-
sition on the existing time interval [t∗, T ), namely,

(4.79) vc(t, x) =

K∑
k=1

λ
− d

2

k Qk(t,
x− αk

λk
)eiθk + z(t, x) +R(t, x)

(:= U(t, x) + z(t, x) +R(t, x))

with Qk(t, y) := Q(y)ei(βk(t)·y− 1
4γk(t)|y|2), the parameters P := {λ, α, β, γ, θ} are C1

functions and the following orthogonality conditions hold on [t∗, T ): for 1 ≤ k ≤ K,

(4.80)

Re

∫
(x− αk)UkRdx = 0, Re

∫
|x− αk|2UkRdx = 0,

Im

∫
∇UkRdx = 0, Im

∫
ΛUkRdx = 0, Im

∫
�kRdx = 0.

This fact is mainly due to the uniform estimate (4.18) of modulation equation.
We refer to [65] for more details. Hence, taking the limit n → ∞ in the uniform
estimates (4.3)-(4.6) and (4.61) we get the following estimates on [t∗, T ): for 1 ≤
k ≤ K,

‖R(t)‖L2 ≤ (T − t)κ+1, ‖R(t)‖H1 ≤ (T − t)κ, ‖R(t)‖
H

3
2
≤ (T − t)κ−2,(4.81)

|λk(t)− wk(T − t)|+
∣∣γk(t)− w2

k(T − t)
∣∣ ≤ (T − t)κ,(4.82)

|αk(t)− xk|+ |βk(t)| ≤ (T − t)
κ
2 +

1
2 ,(4.83)

|θk(t)− (w−2
k (T − t)−1 + ϑk)| ≤ (T − t)κ−2.(4.84)

As a consequence, for any t ∈ [t∗, T ), λk, γk, P are comparable to T − t:

λk(t), γk(t), P (t) ≈ T − t,(4.85)

Mod(t) ≤ Cα∗(T − t)κ+1,(4.86)

‖∂υ
xη‖L2 ≤ Cα∗(T − t)κ−1−|υ|, t ∈ [t∗, T ), |υ| ≤ 2,(4.87)

where C > 0 is a universal constant independent of ε, α∗ and t.

5. Conditional uniqueness of multi-bubble Bourgain-Wang solutions

5.1. Control of the difference. In this subsection we assume Hypothesis (H1)
with m ≥ 10, υ∗ ≥ 12. Set κ := (m+ d

2 − 1) ∧ (υ∗ − 2). Note that κ ≥ 9 + d
2 .
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Let vc be the constructed multi-bubble Bourgain-Wang solution in Theorem
1.2, with the corresponding parameters P = (λ, α, β, γ, θ). Let v be any blow-up
solution to (1.1) satisfying

(5.1) ‖v(t)−
K∑

k=1

Sk(t)− z(t)‖L2 + (T − t)‖v(t)−
K∑

k=1

Sk(t)− z(t)‖H1

≤ C(T − t)4+ζ , t ∈ [t∗, T ),

where ζ is any positive constant close to 0. Set

w := v − vc =

K∑
k=1

wk, wk := wΦk, 1 ≤ k ≤ K,(5.2)

where {Φk} are given by (2.51). Define the renormalized variable εk by

wk(t, x) := λk(t)
− d

2 εk(t,
x− αk(t)

λk(t)
)eiθk(t), 1 ≤ k ≤ K.(5.3)

Note that εk is different from εk defined in (2.52). Similarly to (2.9), set

D̃(t) := ‖w(t)‖L2 + (T − t)‖∇w(t)‖L2 .(5.4)

Then, by (4.81) and (5.1),

‖R(t)‖L2 ≤ (T − t)κ+1,

‖R(t)‖H1 ≤ (T − t)κ, with κ ≥ 9,(5.5)

‖R(t)‖
H

3
2
≤ (T − t)κ−2,

D̃(t) ≤ C(T − t)4+ζ ,

‖w(t)‖pLp ≤ C(T − t)−d( p
2−1)D̃p.(5.6)

Moreover, by equations (1.1) and (5.6), w satisfies the equation

(5.7)

{
i∂tw +Δw + a1 · ∇w + a0w + f(vc + w)− f(vc) = 0, t ∈ (t∗, T ),

lim
t→T

‖w(t)‖H1 = 0.

The crucial ingredient in the uniqueness proof is the following Lyapunov type
functional, which is similar to the generalized energy I in (3.54),

Ĩ :=
1

2

∫
|∇w|2dx+

1

2

K∑
k=1

1

λ2
k

∫
|w|2Φkdx− Re

∫
F (vc + w)− F (vc)− f(vc)wdx

+

K∑
k=1

γk
2λk

Im

∫
(∇χA)

(
x− αk

λk

)
· ∇wwΦkdx.

(5.8)

Lemma 5.1. There exist C1, C2, C3 > 0 such that for t ∈ [t∗, T ),

C1(T − t)−2D̃2 − C2

K∑
k=1

Scalk
λ2
k

≤ Ĩ ≤ C3A(T − t)−2D̃2,(5.9)
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where

Scalk(t) := 〈εk,1, Q〉2 + 〈εk,1, yQ〉2 + 〈εk,1, |y|2Q〉2(5.10)

+ 〈εk,2,∇Q〉2 + 〈εk,2,ΛQ〉2 + 〈εk,2, ρ〉2,

and εk,1, εk,2 are the real and imaginary parts of εk, respectively.

Proof. We first show that the constructed blow-up solution vc in (5.8) can be re-

placed by the blow-up profile U given by (4.79), up to the error O((T − t)−1D̃2),
i.e.,

(5.11) Re

∫
F (vc + w)− F (vc)− f(vc)wdx

= Re

∫
F (U + w)− F (U)− f(U)wdx+ o((T − t)−1D̃2).

Note that |F ′′(vc, w) · w2 − F ′′(U,w) · w2| ≤ C(|U | 4d−1 + |w| 4d−1 + |z| 4d−1 +

|R| 4d−1)|z +R||w|2. By (2.25), (4.81) and (5.6), we have∫
|U | 4d−1|z +R||w|2dx

≤ C(T − t)−2
K∑

k=1

‖e−δ|y|εz,k‖L∞‖w‖2L2

+ C(T − t)−
d
2 (

4
d−1)‖R‖L2‖w‖2H1 + Ce−

δ
T−t ‖w‖2L2

≤ C(α∗(T − t)m−1+ d
2 + (T − t)κ−3+ d

2 + e−
δ

T−t )D̃2 = o((T − t)−1D̃2).(5.12)

Moreover, by (2.21), (4.81) and (5.6),∫
(|w| 4d−1 + |z| 4d−1 + |R| 4d−1)|z +R||w|2dx = o((T − t)−1D̃2).(5.13)

Hence, (5.11) follows from (5.12) and (5.13), as claimed.
Next, for the R.H.S. of (5.11), note that

Re(F (U + w)− F (U)− f(U)w)(5.14)

= (
1

2
+

1

d
)|U | 4d |w|2 + 1

d
|U | 4d−2 Re(U2w2) +O((|U | 4d−1 + |w| 4d−1)|w|3).

The error term above can be bounded by, via (5.6),

∫
(|U | 4d−1 + |w| 4d−1)|w|3dx ≤C((T − t)−2+ d

2 ‖w‖3H1 + ‖w‖2+
4
d

H1 ) ≤ C(T − t)−1D̃2.

(5.15)

Moreover, for the Morawetz type functional in (5.8),∣∣∣∣ γk2λk
Im

∫
(∇χA)

(
x− αk

λk

)
· ∇wwΦkdx

∣∣∣∣ ≤ CA‖w‖L2‖∇w‖L2(5.16)

≤ CA(T − t)−1D̃2(t).
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Thus, we conclude from (5.11), (5.14)-(5.16) that

(5.17) Ĩ =
1

2
Re

∫
|∇w|2 +

K∑
k=1

1

λ2
k

|w|2Φk − (1 +
2

d
)|U | 4d |w|2

− 2

d
|U | 4d−2U2w2dx+O(A(T − t)−1D̃2).

Now, on one hand, by Hölder’s inequality, (5.17) and (5.4),

|Ĩ | ≤ C(‖w‖2H1 + (T − t)−2‖w‖2L2 + (T − t)−1D̃2) ≤ CA(T − t)−2D̃2,(5.18)

which yields the second inequality in (5.9).
On the other hand, the first inequality in (5.9) mainly follows from the coercivity

type estimate below, which is similar to (4.25) mainly due to the local coercivity
of linearized operators,

Ĩ ≥ C1(T − t)−2D̃2 − C2(A(T − t)−1D̃2 +
K∑

k=1

λ−2
k Scalk + e−

δ
T−t D̃2).

Hence, for t close to T such that C2(A(T − t) + e−
δ

T−t ) ≤ 1
2C1, it leads to

Ĩ ≥ 1

2
C1(T − t)−2D̃2 − C2

K∑
k=1

λ−2
k Scalk.

This verifies the first inequality in (5.9). Therefore, the proof is complete. �

The following monotonicity property of Ĩ is crucial in the derivation of unique-
ness.

Theorem 5.2 (Monotonicity of Ĩ ). There exist C1, C2 > 0 such that for A large
enough,

dĨ

dt
≥C1

K∑
k=1

∫
(
1

λk
|∇wk|2 +

1

λ3
k

|wk|2)e−
|x−αk|
Aλk dx− C2AẼr, for t close to T,

(5.19)

where

Ẽr =
D̃2

(T − t)2
+ ε

D̃2

(T − t)3
+

K∑
k=1

Scalk(t)

λ3
k(t)

.(5.20)

Remark 5.3. Comparing with the error Er in (3.56), we see that Ẽr in (5.20) only
contains the orders of D higher than one. This fact is important in the derivation
of uniqueness.
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Proof. Using equation (5.7) we compute

dĨ

dt
= −

K∑
k=1

λ̇k

λ3
k

Im

∫
|w|2Φkdx

−
K∑

k=1

1

λ2
k

Im〈f ′(vc) · w,wk〉 − Re〈f ′′(vc, w) · w2, ∂tvc〉

−
K∑

k=1

1

λ2
k

Im〈w∇Φk,∇w〉 −
K∑

k=1

1

λ2
k

Im〈f ′′(vc, w) · w2, wk〉

− Im〈Δw −
K∑

k=1

1

λ2
k

wk + f(vc + w)− f(vc), a1 · ∇w + a0w〉

−
K∑

k=1

λ̇kγk − λkγ̇k
2λ2

k

Im〈∇χA(
x− αk

λk
) · ∇w,wk〉

+

K∑
k=1

γk
2λk

Im〈∂t(∇χA(
x− αk

λk
)) · ∇w,wk〉

+

K∑
k=1

Im〈 γk
2λ2

k

ΔχA(
x− αk

λk
)wk +

γk
2λk

∇χA(
x− αk

λk
) · (∇wk +∇wΦk), ∂tw〉

=:
9∑

l=1

Ĩt,l.

(5.21)

In order to reduce the analysis of (5.21) to the previous case in (3.58) and (3.91),

we show that vc in Ĩt,2, Ĩt,3, Ĩt,5, Ĩt,6 and Ĩt,9 can be replaced by U + z, up to

the acceptable error (T − t)−2D̃2.

(i) Estimate of Ĩt,2. By (6.13),

|Ĩt,2 +
K∑

k=1

1

λ2
k

Im〈f ′(U + z) · w,wk〉|

≤ C

K∑
k=1

1

λ2
k

∫
(|U | 4d−1 + |z| 4d−1 + |R| 4d−1)|R||w|2dx

≤ C((T − t)−4+ d
2 ‖R‖L2‖w‖2L4 + (T − t)−2‖z‖

4
d−1

L∞ ‖R‖L2‖w‖2L4

+ (T − t)−2‖R‖
4
d

H1‖w‖2L4).

Then, by (2.21), (4.81) and (5.6),

|Ĩt,2 +

K∑
k=1

1

λ2
k

Im〈f ′(U + z) · w,wk〉|(5.22)

≤ C((T − t)κ−3 + (T − t)
4
dκ−

d
2−2)D̃2

≤ C(T − t)−2D̃2.
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(ii) Estimate of Ĩt,3. By the decomposition (4.79),

Re〈f ′′(vc, w) · w2, ∂tvc〉 = Re〈f ′′(vc, w) · w2, ∂t(U + z)〉+Re〈f ′′(vc, w) · w2, ∂tR〉.

Let us treat the two terms on the R.H.S. above separately.
First by (6.14),

|Re〈f ′′(vc, w) · w2, ∂t(U + z)〉 − Re〈f ′′(U + z, w) · w2, ∂t(U + z)〉|

≤C‖∂t(U + z)‖L∞

∫ (
|U | 4d−2 + |z| 4d−2 + |R| 4d−2 + |w| 4d−2

)
|R||w|2dx.(5.23)

Since by (2.25) and (3.65), ‖∂t(U + z)‖L∞ ≤ C(T − t)−2− d
2 . Then, by (4.81) and

(5.6), the R.H.S. above can be bounded by, up to a universal constant,

(5.24) (T − t)−2− d
2 (((T − t)−2+d + ‖z‖

4
d−2

L∞ )‖R‖L2‖w‖2L4

+ ‖R‖
4
d−1

H1 ‖w‖2L4 + ‖R‖L2‖w‖
4
d

L
8
d
) ≤ (T − t)−2D̃2.

Next we show that

Re〈f ′′(vc, w) · w2, ∂tR〉 = O((T − t)−2D̃2).(5.25)

To this end, by equation (2.54),

|Re〈f ′′(vc, w) · w2, ∂tR〉|
= | Im〈f ′′(vc, w) · w2,ΔR+ f(vc)− f(U + z) + (a1 · ∇+ a0)R+ η〉|.

Note that, by (4.61),

| Im〈f ′′(vc, w) · w2,ΔR〉| ≤ C‖R‖
Ḣ

3
2
‖f ′′(u,w) · w2‖

Ḣ
1
2

(5.26)

≤ C(T − t)κ−2‖f ′′(u,w) · w2‖
Ḣ

1
2
.

Then, by (2.21), (4.79), (4.81), (5.6) and ‖U(t)‖H1 ≤ C(T − t)−1,

‖f ′′(vc, w) · w2‖
Ḣ

1
2
≤ C

1+ 4
d∑

j=2

(‖U‖1+
4
d−j

H1 + ‖z‖1+
4
d−j

H1 + ‖R‖1+
4
d−j

H1 )‖w‖jH1(5.27)

≤ C(T − t)−3‖w‖2H1 .

Plugging this into (5.26) and using κ ≥ 5 we obtain

| Im〈f ′′(vc, w) · w2,ΔR〉| ≤ C(T − t)κ−5‖w‖2H1 ≤ C(T − t)−2D̃2(t).(5.28)

Moreover, since by (6.15),

|f ′′(vc, w) · w2| ≤ C
(
(T − t)−2+ d

2 + |R| 4d−1 + |w| 4d−1
)
|w|2,(5.29)

|f(vc)− f(U + z)| ≤ C(|U | 4d + |R| 4d + |z| 4d )|R| ≤ C((T − t)−2 + |R| 4d )|R|,(5.30)
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taking into account (2.21), (4.81) and (5.6) we get

| Im〈f ′′(vc, w) · w2, f(vc)− f(U + z) + (a1 · ∇+ a0)R〉|

≤ C

∫
((T − t)−2+ d

2 + |R| 4d−1 + |w| 4d−1)|w|2((T − t)−2|R|

+ |R|1+ 4
d + |∇R|+ |R|)dx

≤ C((T − t)−2+ d
2 + ‖R‖

4
d−1

H1 + ‖w‖
4
d−1

H1 )‖w‖2H1((T − t)−2‖R‖L2

+ ‖R‖1+
4
d

H1 + ‖R‖H1)

≤ C(T − t)κ−5+ d
2 D̃2

≤ C(T − t)−2D̃2.(5.31)

Furthermore, by (4.87) and (5.29),

| Im〈f ′′(vc, w) · w2, η〉| ≤ C(T − t)−2+ d
2 ‖η‖L2‖w‖2H1 ≤ C(T − t)−2D̃2.(5.32)

Thus, estimates (5.28), (5.31) and (5.32) together yield (5.25), as claimed.
Therefore, we conclude from (5.23), (5.24) and (5.25) that

Ĩt,3 = Re〈f ′′(U + z, w) · w2, ∂t(U + z)〉+O((T − t)−2D̃2).(5.33)

(iii) Estimate of Ĩt,5. By (5.5), (5.6) and (6.14),

|Ĩt,5 +

K∑
k=1

1

λ2
k

Im〈f ′′(U + z, w) · w2, wk〉|

≤ C(T − t)−2

∫ (
|U | 4d−2 + |z| 4d−2 + |R| 4d−2 + |w| 4d−2

)
|R||w|3dx

≤ C(T − t)−4+d‖R‖H1‖w‖3H1 ≤ C(T − t)−2D̃2.

This yields that

Ĩt,5 = −
K∑
j=1

1

λ2
k

Im〈f ′′(U,w) · w2, wk〉+O((T − t)−2D̃2).(5.34)

(iv) Estimate of Ĩt,6. Since by (6.6),

|f(vc + w)− f(vc)− (f(U + z + w)− f(U + z))|
= |f ′(vc, w) · w − f ′(U + z, w) · w|

≤ C(|U | 4d−1 + |z| 4d−1 + |R| 4d−1 + |w| 4d−1)|R||w|,(5.35)

we infer from (4.81) that

| Im〈f(vc + w)− f(vc)− (f(U + z + w)− f(U + z)), a1 · ∇w + a0w〉|
≤ C(T − t)−2D̃2.

This yields that

(5.36) Ĩt,6 = − Im〈Δw −
K∑

k=1

1

λ2
k

wk

+ f(U + z + w)− f(U + z), a1 · ∇w + a0w〉+O((T − t)−2D̃2).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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(v) Estimate of Ĩt,9. By equation (5.7),

Ĩt,9 =

K∑
k=1

Im
〈 γk
2λ2

k

ΔχA(
x− αk

λk
)wk +

γk
2λk

∇χA(
x− αk

λk
) · (∇wk +∇wΦk),

iΔw + i(a1 · ∇w + a0w) + i(f(vc + w)− f(vc))
〉
.(5.37)

Note that, unlike in (2.54), we have η = 0 here. Then, in view of (5.35), we see
that∣∣∣∣〈 γk

2λ2
k

ΔχA(
x− αk

λk
)wk +

γk
2λk

∇χA(
x− αk

λk
)

· (∇wk +∇wΦk), i(f(vc + w)− f(vc))〉

− 〈 γk
2λ2

k

ΔχA(
x− αk

λk
)wk +

γk
2λk

∇χA(
x− αk

λk
)

· (∇wk +∇wΦk), i(f(U + z + w)− f(U + z))〉
∣∣∣∣

≤ CA

∫ (
(T − t)−1|w|+ |∇w|

) (
|U | 4d−1 + |z| 4d−1 + |w| 4d−1 + |R| 4d−1

)
|R||w|dx

≤ CA(T − t)−2D̃2.

This yields that

Ĩt,9 =

K∑
k=1

Im
〈 γk
2λ2

k

ΔχA(
x− αk

λj
)wk +

γk
2λk

∇χA(
x− αk

λk
) · (∇wk +∇wΦk),

iΔw + i(f(U + z + w)− f(U + z)) + i(a1 · ∇+ a0)w
〉
+O(A(T − t)−2D̃2).

(5.38)

Now, the reference solution vc in (5.21) has been replaced by U + z up to the

order O((T − t)−2D̃2). Note that, by (4.81)-(4.84) and (5.6), the conditions in
Theorem 3.5 are verified. Hence, arguing as in the proof of Theorem 3.5 with w
replacing R and using (5.6) we obtain (5.19).

As mentioned below (5.37), because for the difference w we have η = 0, the
errors involving Mk and the linear terms of D in (3.56) do not appear here, only
the higher order terms of D remain.

Therefore, the proof is complete. �

As a consequence of Lemma 5.1 and Theorem 5.2 we have

Corollary 5.4. For t close to T , set

Ñ(t) := sup
t≤s<T

D̃2(s)

(T − s)2
.(5.39)

Then, there exists C > 0 such that

Ñ(t) ≤ C(
K∑

k=1

sup
t≤s<T

Scalk(s)

λ2
k(s)

+

∫ T

t

K∑
k=1

Scalk(s)

λ3
k(s)

+ ε
Ñ(s)

T − s
ds).(5.40)
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Proof. By Lemma 5.1 and Theorem 5.2, for t < t̃ < T ,

C1
D̃2(t)

(T − t)2

≤ Ĩ (t) + C2

K∑
k=1

Scalk(t)

λ2
k(t)

= Ĩ (t̃) + C2

K∑
k=1

Scalk(t)

λ2
k(t)

−
∫ t̃

t

dĨ

ds
(s)ds

≤ CA(
D̃2(t̃)

(T − t̃)2
+

K∑
k=1

Scalk(t)

λ2
k(t)

+

∫ t̃

t

D̃2(s)

(T − s)2
+

K∑
k=1

Scalk(s)

λ3
k(s)

+ ε
D̃2(s)

(T − s)3
ds),

which yields that

sup
t≤s≤t̃

D̃2(s)

(T − s)2
≤ CA(Ñ(t̃) +

K∑
k=1

sup
t≤s≤˜t

Scalk(s)

λ2
k(s)

+ (t̃− t)Ñ(t)

+

∫ t̃

t

K∑
k=1

Scalk(s)

λ3
k(s)

+ ε
Ñ(s)

T − s
ds).

Since by (5.6), Ñ(t̃) → 0 as t̃ → T , taking t̃ → T and t close to T we obtain
(5.40). �

5.2. Control of the null space. In this subsection we derive the control of scalar
Scalk. The main result is formulated in Theorem 5.8. The arguments follow the
lines in the proof of [65, Theorem 7.7], mainly based on algebraic identities. For
the reader’s convenience, let us sketch the main arguments below.

For every 1 ≤ k ≤ K, define the renormalized variables ẽk and ek by

w(t, x) = λk(t)
− d

2 ẽk(t,
x− αk(t)

λk(t)
)eiθk(t),

with ẽk(t, y) = ek(t, y)e
i(βk(t)·y− 1

4γk(t)|y|2).

(5.41)

Note that the renormalized variable ek is different from the previous one εk in (5.3).
We use (6.7) to expand f(vc+w)−f(vc) = ∂zf(vc)w+∂zf(vc)w+f ′′(vc, w) ·w2,

and expand ∂zf(vc) and ∂zf(vc) around the profile U to get f(vc + w) − f(vc) =
f ′(U) · w +G1, where

G1 := w(∂zf)
′(U, z +R) · (z +R) + w(∂zf)

′(U, z +R) · (z +R) + f ′′(vc, w) · w2.

(5.42)

Decompose f ′(U) · w into three parts

(5.43) f ′(U) · w = f ′(Uk) · w +
∑
l �=k

f ′(Ul) · w

+ [f ′(U) · w −
K∑
l=1

f ′(Ul) · w] =: f ′(Uk) · w +G2 +G3,
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and set G4 := a1 ·∇w+a0w, with a1, a0 defined by (1.2) and (1.3). Thus, equation
(5.7) can be reformulated:

i∂tw +Δw + f ′(Uk) · w = −
4∑

l=1

Gl.(5.44)

Plugging (5.41) into (5.44) and using algebraic computations one has the equation
of ek below.

Lemma 5.5. For every 1 ≤ k ≤ K, ek satisfies the equation

(5.45) iλ2
k∂tek +Δek − ek + (1 +

2

d
)Q

4
d ek +

2

d
Q

4
d ek

= −
4∑

l=1

Hl +O
(
(〈y〉2|ẽk|+ 〈y〉|∇ẽk|)Modk

)
,

where

Hl(t, y) = λ
2+ d

2

k e−iθke−i(βk·y− 1
4γk|y|2)Gl(t, λky + αk), 1 ≤ l ≤ 4.(5.46)

The error terms {Hl} in (5.46) can be controlled by Lemma 5.6.

Lemma 5.6. Let K belong to the generalized kernels of the linearized operator L
given by (6.1), i.e., K ∈ {Q, yQ, |y|2Q,∇Q,ΛQ, ρ}. Then, there exist C, δ > 0 such
that ∫

|H1(t, y)||K(y)|dy ≤ C(T − t)4+ζD̃(t),(5.47) ∫
(|H2(t, y)|+ |H3(t, y)|)|K(y)|dy ≤ Ce−

δ
T−t ‖w‖L2 ,(5.48)

|
∫

H4(t, y)K(y)dy| ≤ C(T − t)υ∗+1‖w‖L2 ,(5.49)

where υ∗ is the flatness index of the spatial functions {φl} in Hypothesis (H1).

Proof. Estimates (5.48) and (5.49) were proved in [65, (7,95), (7.96)], hence we
mainly focus on the estimate (5.47). Define the renormalized variable εR,k by

R(t, x) = λ
− d

2

k εR,k(t,
x− αk

λk
)eiθk .(5.50)

By (5.46),∫
|H1(t, y)||K(y)|dy ≤ C(T − t)2−

d
2

∫
|G1(t, x)K(

x− αk

λk
)|dx.(5.51)

By (5.42), we have |G1| ≤ C(|U | 4d−1 + |z + R| 4d−1)|z + R||w| + C(|U | 4d−1 + |z +

R| 4d−1 + |w| 4d−1)|w|2. Taking into account Lemma 2.6 and using K(y) ≤ Ce−δ|y|,
we derive∫

|H1(t, y)||K(y)|dy

≤ C

∫
e−δ|y|

(
(e−δ|y| + |εz,k|

4
d−1 + |εR,k|

4
d−1)|εz,k + εR,k||ẽk|

+ (e−δ|y| + |εz,k|
4
d−1 + |εR,k|

4
d−1 + |ẽk|

4
d−1)|ẽk|2

)
dy + Ce−

δ
T−t .(5.52)
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Then, by (2.21), (2.25), (4.81) and (5.6), the R.H.S. can be bounded by, up to a
universal constant,(

‖e−δ|y|εz,k‖L∞ + ‖εR,k‖L2 + ‖e−δ|y||εz,k|
4
d−1‖L∞‖εz,k + εR,k‖L2

)
‖ẽk‖L2

+ ‖εR,k‖
4
d−1

H1 ‖εz,k + εR,k‖H1‖ẽk‖H1 + (1 + ‖e−δ|y||εz,k|
4
d−1‖L∞)‖ẽk‖2L2

+ ‖εR,k‖
4
d−1

H1 ‖ẽk‖2H1 + ‖ẽk‖
4
d+1

H1 + e−
δ

T−t

≤
(
α∗(T − t)m+1+ d

2 + (T − t)κ+1 + (T − t)κ(
4
d−1)

)
D̃

+ (1 + (T − t)κ(
4
d−1))D̃2 + D̃

4
d+1 + e−

δ
T−t

≤ (T − t)4+ζD̃.

This yields (5.47) and finishes the proof. �

Applying Lemmas 5.5 and 5.6 and using algebraic identities in (6.3) one has the
following ODE system of the renormalized variable ek along the six directions in
the null space.

Proposition 5.7. Let ek be as in (5.41) and ek,1 := Re ek, ek,2 := Im ek. Then,
for every 1 ≤ k ≤ K,

d

dt
〈ek,1, Q〉 = O((T − t)3+ζ

√
Ñ),(5.53)

d

dt
〈ek,2,ΛQ〉 = 2λ−2

k 〈ek,1, Q〉+O((T − t)3+ζ
√
Ñ),(5.54)

d

dt
〈ek,1, |y|2Q〉 = −4λ−2

k 〈ej,2,ΛQ〉+O((T − t)3+ζ
√
Ñ),(5.55)

d

dt
〈ek,2, ρ〉 = λ−2

k 〈ek,1, |y|2Q〉+O((T − t)3+ζ
√
Ñ),(5.56)

d

dt
〈ek,2,∇Q〉 = O((T − t)3+ζ

√
Ñ),(5.57)

d

dt
〈ek,1, yQ〉 = −2λ−2

k 〈ek,2,∇Q〉+O((T − t)3+ζ
√
Ñ).(5.58)

Proof. By (5.45),

d

dt
〈ek,1, Q〉 =− λ−2

k Im

∫
Q((Δek − ek + (1 +

2

d
)Q

4
d ek +

2

d
Q

4
d ek) +

4∑
l=1

Hl)dy

+O(λ−2
k Modk

∫
Q(〈y〉2|ẽk|+ 〈y〉|∇ẽk|)dy).(5.59)

Note that, by the definition of L− and the identity L−Q = 0 in (6.3),

Im

∫
Q(Δek − ek + (1 +

2

d
)Q

4
d ek +

2

d
Q

4
d ek)dy = − Im

∫
QL−ek,2dy

= − Im

∫
L−Qek,2dy

= 0.
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Moreover, since D̃ ≤ C(T − t)
√
Ñ , by Lemma 5.6,

λ−2
k |

∫
QHldy| ≤ Cλ−2

k (T − t)4+ζD̃ ≤ C(T − t)3+ζ
√
Ñ .

It also follows from (4.86) that for κ ≥ 4,

λ−2
k Modk

∫
Q
(
〈y〉2|ẽk|+ 〈y〉|∇ẽk|

)
dy

≤ Cλ−2
k ModD̃ ≤ Cα∗(T − t)κ

√
Ñ ≤ Cα∗(T − t)3+ζ

√
Ñ .

Hence, (5.53) follows from the above estimates. The proof of (5.54)-(5.58) is
similar, see also the proof of [65, Proposition 7.12]. �

As a consequence, we have the control of scalar Scalk below. The proof is similar
to that of [65, Theorem 7.7] and hence is omitted here.

Theorem 5.8 (Control of Scalk). There exists C > 0 such that for t close to T
and 1 ≤ k ≤ K,

Scalk(t) ≤ C(T − t)2+ζÑ(t).(5.60)

5.3. Proof of conditional uniqueness. We are now in position to prove the
conditional uniqueness part in Theorem 1.2.

Let ε be a sufficiently small constant to be specified later and let t close to T
such that (4.1) holds. By Corollary 5.4, for any t ∈ [t∗, T ),

Ñ(t) ≤ C1

K∑
k=1

sup
t≤s<T

Scalk(s)

λ2
k(s)

+ C1

∫ T

t

(

K∑
k=1

Scalk(s)

λ3
k(s)

+ ε
Ñ(s)

T − s
)ds,(5.61)

which along with Theorem 5.8 yields that for some ζ > 0,

Ñ(t) ≤ C2(T − t)ζÑ(t) + C2ε

∫ T

t

Ñ(s)

T − s
ds,(5.62)

where C2 is independent of ε and t. Then, taking t even closer to T such that
C2(T − t)ζ ≤ 1

2 we obtain the Gronwall type inequality

Ñ(t) ≤ 2C2ε

∫ T

t

Ñ(s)

T − s
ds.(5.63)

Moreover, by (5.6) and (5.39),

Ñ(t) ≤ C3(T − t)6+ζ ,(5.64)

where C3(≥ 1) is independent of ε and t.
We claim that for any t close to T and for any l ≥ 1,

Ñ(t) ≤ (
2C2C3ε

6 + ζ
)l(T − t)6+ζ .(5.65)

To this end, plugging (5.64) into the Gronwall type inequality (5.63) we get

Ñ(t) ≤ 2C2ε

∫ T

t

C3(T − s)5+ζds ≤ (
2C2C3ε

6 + ζ
)(T − t)6+ζ ,(5.66)

which verifies (5.65) at the preliminary step l = 1. Moreover, plugging (5.65) into
(5.63) we derive that (5.65) is still valid with l+1 replacing l. Thus, the induction
arguments lead to (5.65).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

MULTI-BUBBLE BOURGAIN-WANG SOLUTIONS 579

Therefore, take ε small enough such that 2C2C3ε
6+ζ < 1. Then, it follows from

(5.65) that

Ñ(t) ≤ lim
l→∞

(
2C2C3ε

6 + ζ
)l(T − t)6+ζ = 0,(5.67)

which yields Ñ(t) = 0 for t close to T , and so w ≡ 0. The proof of Theorem 1.2 is
complete.

6. Appendix

This Appendix mainly contains preliminaries of linearized operators around the
ground state, the expansion of the nonlinearity and the proof of Theorem 2.3.

Coercivity of the linearized operators. Let L = (L+, L−) be the linearized
operator around the ground state, defined by

L+ := −Δ+ I − (1 +
4

d
)Q

4
d , L− := −Δ+ I −Q

4
d .(6.1)

The generalized null space of operator L is spanned by {Q, xQ, |x|2Q,∇Q,ΛQ, ρ},
where Λ := d

2Id + x · ∇, and ρ is the unique H1 spherically symmetric solution to
the equation

L+ρ = −|x|2Q,(6.2)

which satisfies the exponential decay property (see, e.g., [41, 48]), i.e., for some
C, δ > 0,

|ρ(x)|+ |∇ρ(x)| ≤ Ce−δ|x|.

Moreover, it holds that (see, e.g., [69, (B.1), (B.10), (B.15)])

(6.3)
L+∇Q = 0, L+ΛQ = −2Q, L+ρ = −|x|2Q,

L−Q = 0, L−xQ = −2∇Q, L−|x|2Q = −4ΛQ.

Lemma 6.1 contains the key localized coercivity of the linearized operator.

Lemma 6.1 (Localized coercivity [65, Corollary 3.4]). Let φ be a positive smooth
radial function on Rd, such that φ(x) = 1 for |x| ≤ 1, φ(x) = e−|x| for |x| ≥ 2,

0 < φ ≤ 1, and
∣∣∣∇φ

φ

∣∣∣ ≤ C for some C > 0. Set φA(x) := φ
(
x
A

)
, A > 0. Then, for

A large enough we have

(6.4)

∫
(|f |2 + |∇f |2)φA − (1 +

4

d
)Q

4
d f2

1 −Q
4
d f2

2dx

≥ C1

∫
(|∇f |2 + |f |2)φAdx− C2Scal(f),

where C1, C2 > 0, f1, f2 are the real and imaginary parts of f , respectively, and
Scal(f) denotes the scalar products along the unstable directions in the null space

Scal(f) := 〈f1, Q〉2 + 〈f1, xQ〉2 + 〈f1, |x|2Q〉2 + 〈f2,∇Q〉2 + 〈f2,ΛQ〉2 + 〈f2, ρ〉2.

(6.5)
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Expansion of the nonlinearity. Let us recall the expansion that for any contin-
uous differentiable function g : C → C and for any v, w ∈ C (see, e.g., [39, (3.10)]),
g(v + w) = g(v) + g′(v, w) · w, with

g′(v, w) · w :=w

∫ 1

0

∂zg(v + sw)ds+ w

∫ 1

0

∂zg(v + sw)ds,(6.6)

where z = x + iy ∈ C, ∂zg and ∂zg are the usual complex derivatives ∂zg =
1
2 (∂xg− i∂yg), ∂zg = 1

2 (∂xg+ i∂yg), respectively. Moreover, if ∂zg and ∂zg are also
continuously differentiable, we may expand g up to the second order

g(v + w) =g(v) + g′(v) · w + g′′(v, w) · w2,(6.7)

where

g′(v) · w := ∂zg(v)w + ∂zg(v)w,

g′′(v, w) · w2 := w2

∫ 1

0

t

∫ 1

0

∂zzg(v + stw)dsdt+ 2|w|2
∫ 1

0

t

∫ 1

0

∂zzg(v + stw)dsdt

+ w2

∫ 1

0

t

∫ 1

0

∂zzg(v + stw)dsdt.

(6.8)

In particular, for f(z) := |z| 4d z with d = 1, 2, z ∈ C, one has

f(v + w) =f(v) + f ′(v) · w + f ′′(v) · w2 +O(

1+ 4
d∑

l=3

|v|1+ 4
d−l|w|l),(6.9)

where

f ′(v) · w :=∂zf(v)w + ∂zf(v)w = (1 +
2

d
)|v| 4dw +

2

d
|v| 4d−2v2w,

(6.10)

f ′′(v) · w2 :=
1

2
∂zzf(v)w

2 + ∂zzf(v)|w|2 +
1

2
∂zzf(v)w

2

=
1

d
(1 +

2

d
)|v| 4d−2vw2 +

2

d
(1 +

2

d
)|v| 4d−2v|w|2 + 1

d
(
2

d
− 1)|v| 4d−4v3w2.(6.11)

The following estimates are also useful:

|f(v1)− f(v2)| ≤ C(|v1|
4
d + |v2|

4
d )|v1 − v2|,

(6.12)

|f ′(v1) · w − f ′(v2) · w| ≤ C(|v1|
4
d−1 + |v2|

4
d−1)|v1 − v2||w|,

(6.13)

|f ′′(v1, w) · w2 − f ′′(v2, w) · w2| ≤ C(|v1|
4
d−2 + |v2|

4
d−2 + |w| 4d−2)|v1 − v2||w|2,

(6.14)

|f ′′(v, w) · w2| ≤ C(|v| 4d−1 + |w| 4d−1)|w|2.
(6.15)

Proof of Theorem 2.3. We adapt the arguments as in [61, 64, 65].

(i) Reformulation of the equation of remainder. By (2.1) and (6.7),

f(v) = f(U + z) + f ′(U + z) ·R+ f ′′(U + z,R) ·R2.(6.16)
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Plugging this into (2.54) leads to the equation of R:

(6.17) i∂tR+
K∑

k=1

(ΔRk + (1 +
2

d
)|Uk|

4
dRk +

2

d
|Uk|

4
d−2U2

kRk

+ i∂tUk +ΔUk + |Uk|
4
dUk) = −

5∑
l=1

Hl,

where H1, H2 contain the interactions between different blow-up profiles Uj and Ul,
j �= l,

H1 := f ′(U) ·R −
K∑

k=1

f ′(Uk) ·Rk, H2 := f(U)−
K∑

k=1

f(Uk),(6.18)

the terms H3, H4 contain the regular flow z, i.e.,

(6.19)
H3 := f ′(U + z) ·R− f ′(U) ·R+ f ′′(U + z,R) ·R2,

H4 := f(U + z)− f(U)− f(z),

and the lower order perturbations are contained in H5:

H5 :=

K∑
l=1

(a1 · ∇(Ul +Rl) + a0(Ul +Rl)) ,(6.20)

where a1, a0 are the coefficients of lower order perturbations given by (1.2) and
(1.3), respectively.

(ii) Estimate of Modulation equations. Let us take the modulation equation
λ2
kγ̇k + γ2

k to illustrate the main arguments below. As R(T∗) = 0, we may take t∗

close to T such that ‖R‖C([t∗,T∗];H1) ≤ 1.
Taking the inner product of (6.17) with ΛkUk and then taking the real part we

get

− Im〈∂tR,ΛUk〉+Re〈ΔRk + (1 +
2

d
)|Uk|

4
dRk +

2

d
|Uk|

4
d−2U2

kRk,ΛkUk〉

+Re〈i∂tUk +ΔUk + |Uk|
4
dUk,ΛkUk〉

=− Re〈
∑
j �=k

(ΔRj + (1 +
2

d
)|Uj |

4
dRj +

2

d
|Uj |

4
d−2U2

j Rj),ΛkUk〉

− Re〈
∑
j �=k

(i∂tUj +ΔUj + |Uj |
4
dUj),ΛkUk〉 −

5∑
l=1

Re〈Hl,ΛkUk〉.(6.21)

First for the L.H.S. of (6.17), we have (see the proof of [65, (4.38)], [12, (6.43)])

λ2
k × ( L.H.S. of (6.21))

= −1

4
‖yQ‖22(λ2

kγ̇k + γ2
k) +Mk

+O((P + ‖R‖L2 + e−
δ

T−t )Mod+ P 2‖R‖L2 + ‖R‖2L2 + e−
δ

T−t ).(6.22)

Next we show that the R.H.S. of (6.21) contributes acceptable orders. This
is mainly due to the exponentially small interactions between different blow-up
profiles and to the flatness of both the regular profile z and lower order coefficients
a1, a0 at the singularities.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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To be precise, in view of Lemma 2.6 and (2.11), we have that for some δ > 0,

|〈
∑
j �=k

(ΔRj + (1 +
2

d
)|Uj |

4
dRj +

2

d
|Uj |

4
d−2U2

j Rj) +H1,ΛkUk〉|(6.23)

≤ Cλ−2
k e−

δ
T−t ‖R‖L2 ,

|〈
∑
j �=k

(i∂tUj +ΔUj + |Uj |
4
dUj) +H2,ΛkUk〉|(6.24)

≤ Cλ−2
k e−

δ
T−t (1 +Mod).

For the third term H3, by (6.13) and Lemma 2.6,

|Re〈f ′(U + z) ·R− f ′(U) ·R,ΛkUk〉| ≤ C(λ−2
k ‖e−δ|y|εz,k‖L∞D + e−

δ
T−t ).(6.25)

Moreover, by (6.15) and (2.50),

|〈f ′′(U + z,R) ·R2,ΛkUk〉| ≤ C(λ−2
k D2 + e−

δ
T−t ).(6.26)

Hence, we conclude from (6.25) and (6.26) that

Re〈H3,ΛkUk〉 = O(λ−2
k ‖e−δ|y|εz,k‖L∞D + λ−2

k D2 + e−
δ

T−t ).(6.27)

We also see that

|Re〈H4,ΛkUk〉| ≤ C

4/d∑
j=1

∫
|U |1+ 4

d−j |z|j |ΛkUk|dx ≤ Cλ−2
k ‖e−δ|y|εz,k‖L∞ .(6.28)

Regarding the H5 term on the R.H.S. of (6.21), by Lemma 2.6, the change of
variables and integrating by parts formula,

Re〈H5,ΛkUk〉

= Re〈λ−1
k ã1,k · ∇(Qk + εk) + ã0,k(Qk + εk),ΛQk〉+O(e−

δ
T−t )

= −λ−1
k Re〈div ã1,k (Qk + εk),ΛQk〉 − λ−1

k Re〈Qk + εk, ã1,k · ∇(ΛQk)〉

+Re〈ã0,k(Qk + εk),ΛQk〉+O(e−
δ

T−t ),(6.29)

where ã1,k and ã0,k are defined as in Lemma 2.9. Then, applying Lemma 2.9 we
obtain

|Re〈H5,ΛkUk〉| ≤ C(λ−2
k P υ∗+1 + e−

δ
T−t ).(6.30)

Hence, it follows from estimates (6.23), (6.24), (6.27), (6.28) and (6.30) that

R.H.S. of (6.21) ≤Cλ−2
k

(
e−

δ
T−tMod+D2 + ‖e−δ|y|εz,k‖L∞ + P υ∗+1 + e−

δ
T−t

)
.

(6.31)

Now, combining (6.22) and (6.31) together we conclude that for each 1 ≤ k ≤ K,

(6.32) |λ2
kγ̇k + γ2

k| ≤ C((P + ‖R‖L2 + e−
δ

T−t )Mod+ |Mk|+ P 2D

+D2 + ‖e−δ|y|εz,k‖L∞ + P υ∗+1 + e−
δ

T−t ).

Similar arguments apply to the remaining four modulation equations |λkα̇k −
2βk|, |λkλ̇k+γk|, |λ2

kβ̇k+βkγk| and |λ2
kθ̇k−1−|βk|2|, by taking the inner products
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of equation (6.17) with i(x− αk)Uk, i|x− αk|2Uk, ∇Uk, �k, respectively, and then
taking the real parts. This leads to

(6.33) Modk(t) ≤ C((P + ‖R‖L2 + e−
δ

T−t )Mod+ |Mk|+ P 2D

+D2 + ‖e−δ|y|εz,k‖L∞ + P υ∗+1 + e−
δ

T−t ).

Therefore, taking t∗ even closer to T such that (1+C)(P (t)+‖R(t)‖C([t∗,T∗];H1)+

e−
δ

T−t ) ≤ 1
2 and then summing over k and using (2.25) we obtain (2.7).

(iii) Improved estimate of λkλ̇k+γk. Taking the inner product of equation (6.17)
with |x − αk|2Uk, then taking the imaginary part and arguing as in the proof of
(6.31) we have that, similarly to (6.21),

Re〈∂tR, |x− αk|2Uk〉+ Im〈ΔRk + (1 +
2

d
)|Uk|

4
dRk

+
2

d
|Uk|

4
d−2U2

kRk, |x− αk|2Uk〉

+ Im〈i∂tUk +ΔUk + |Uk|
4
dUk, |x− αk|2Uk〉

= O(D2 + ‖e−δ|y|εz,k‖L∞ + P υ∗+1 + e−
δ

T−t ).(6.34)

Note that the bound on the R.H.S. above is equal to (6.31) multiplied by λ2
k, which

essentially relies on the exponential decay of ground state. We also used the fact

that, by (2.7), Mod = O(1), and thus e−
δ

T−tMod = O(e−
δ

T−t ).
Regarding the L.H.S. of (6.34), by the orthogonality condition (2.4), (2.11) and

Lemma 2.6,

Re〈∂tR, |x− αk|2Uk〉 = 2α̇k · Re〈R, (x− αk)Uk〉 − Re〈R, |x− αk|2∂tUk〉

= −Re〈Rk, |x− αk|2∂tUk〉+O(e−
δ

T−t ‖R‖L2).(6.35)

Then, using (2.2), (2.11), (2.52) and the algebraic identity

ΔQk −Qk + |Qk|
4
dQk = |βk − γk

2
y|2Qk − iγkΛQk + 2iβk · ∇Qk,(6.36)

we get

− Re〈Rk, |x− αk|2∂tUk〉

= − Im〈εk, |y|2(ΔQk + |Qk|
4
dQk)〉+O(Mod‖εk‖L2)

= − Im〈εk, |y|2Qk〉 − γk Re〈εk, |y|2ΛQk〉
+ 2βk · Re〈εk, |y|2∇Qk〉+O((Mod+ P 2)D).

By the integration by parts formula and the almost orthogonality (2.53),

− γk Re〈εk, |y|2ΛQk〉+ 2βk Re〈εk, |y|2∇Qk〉

= γk Re〈Λεk, |y|2Qk〉 − 2βk Re〈∇εk, |y|2Qk〉+O(e−
δ

T−t ‖R‖L2).

Thus, we obtain

Re〈∂tR, |x− αk|2Uk〉
= − Im〈εk, |y|2Qk〉+ γk Re〈Λεk, |y|2Qk〉 − 2βk · Re〈∇εk, |y|2Qk〉

+O((Mod+ P 2 + e−
δ

T−t )D).(6.37)
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Furthermore, using (2.11), the identities

ΛQk =

(
ΛQ+ i(βk · y −

1

2
γk|y|2)Q

)
ei(βk·y− 1

4γk|y|2),

∇Qk =

(
∇Q+ i(βk −

1

2
γky)Q

)
ei(βk·y− 1

4γk|y|2)

and 〈ΛQ, |y|2Q〉 = −‖yQ‖2L2 ,

we compute

Im〈i∂tUk +ΔUk + |Uk|
4
dUk, |x− αk|2Uk〉 = (λkλ̇k + γk)‖yQ‖2L2 .(6.38)

Therefore, plugging (6.37) and (6.38) into (6.34) and using the change of vari-
ables, the bound |Mk| ≤ CD and (2.7) we obtain the equation for the renormalized
variable εk below

Im〈Δεk − εk + (1 +
2

d
)|Qk|

4
d εk +

2

d
|Qk|

4
d−2Q2

kεk, |y|2Qk〉

+ γk Re〈Λεk, |y|2Qk〉 − 2βk · Re〈∇εk, |y|2Qk〉+ (λkλ̇k + γk)‖yQ‖2L2

=O
(
P 2D +D2 + ‖e−δ|y|εz,k‖L∞ + P υ∗+1 + e−

δ
T−t

)
.(6.39)

Writing the L.H.S. of (6.39) in terms of real and imaginary parts we see that
the first three terms are exactly the first line of [64, (4.27)] and hence are of order
O(P 2‖R‖L2), due to [64, (4.28)]. This yields that

L.H.S. of (6.39) = (λkλ̇k + γk)‖yQ‖2L2 +O(P 2D).(6.40)

Therefore, plugging this into (6.39) and using (2.25) we obtain the desired estimate
(2.10). �
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