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Abstract

We give a simple proof that for classical Dirichlet forms on infinite di-
mensional linear state spaces the intrinsic closure of a set of full measure
has full capacity. Furthermore, we show that the C1,q-capacity of a set,
enlarged by adding the linear span of a basis in the generalized Cameron-
Martin space remains zero if it was zero for slightly bigger capacities a
priori.

1. introduction, framework and a result on sets with full capacity

In infinite dimensional analysis the question whether a given set has zero or full capacity
(in the sense that its compliment has zero capacity) is much less studied than in finite
dimensions. This question is of importance, since roughly speaking capacity zero sets are
not hit by the underlying process whereas a set of full capacity carries the process for all
times. The first aim of this paper is to give a simple analytic proof for the fact that the
intrinsic closure of a set of full measure has full capacity (cf. Theorem 1.4 below). This
fact is essentially known to experts. We refer e.g. to [7] where this result was proved for
a class of Dirichlet forms with non-flat underlying state space. But there is no reference
for this result for general classical Dirichlet forms of gradient type on linear state spaces.
In this case there is quite an easy proof which we present below. The second aim of this
paper is to prove a result one would expect, but appears to be new. Namely, we prove
that the C1,q-capacity of a set, enlarged by adding all finite linear combinations of a basis
in the generalized Cameron-Martin space, remains zero if it was zero for (slightly bigger)
Cr,p-capacities, r > 1, p > q, a priori (cf. Theorem 3.3 below). Let us first describe our
framework, in which we strictly follow [2].

Let E be a separable Banach space over R. Let E ′ denote its dual and B(E) its Borel
σ-algebra. Let (H, 〈, 〉) be a Hilbert space such that H ⊂ E continuously and densely.
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Identifying H with its dual H ′ by Riesz’s isomorphism, we have

E ′ ⊂ H ⊂ E (1.1)

where both embeddings are continuous and dense. In particular, it follows for the dual-
ization E′〈, 〉E : E ′ × E → R that

E′〈l, h〉E = 〈l, h〉H for all l ∈ E ′, h ∈ H. (1.2)

Furthermore

H = {z ∈ E| sup{ E′〈l, z〉E | l ∈ E ′ with ‖l‖H 6 1} < ∞ }. (1.3)

The norm in E and H we denote by ‖ ‖E and ‖ ‖H respectively.
Let

FC∞
b := {g(l1, · · · , lN) | N ∈ N, g ∈ C∞

b (RN), l1, · · · , lN ∈ E ′}, (1.4)

where C∞
b (RN) denotes the set of all infinitely differentiable bounded functions with all

derivatives bounded. For u ∈ FC∞
b (RN) and z ∈ E we define ∇u(z) ∈ H by

〈∇u(z), h〉H =
∂u

∂h
(z) :=

d

dt
u(z + th)|t=0. (1.5)

Let µ be a probability measure on (E,B(E)) and denote the corresponding real Lp-
spaces by Lp(E, µ), p ∈ [1,∞], and define

Eµ(u, v) :=

∫
E

〈∇u(z),∇v(z)〉Hµ(dz); u, v ∈ FC∞
b . (1.6)

For a set D of B(E)-measurable functions on E we denote the corresponding µ-classes by

D̃µ. Throughout this paper we assume that the following hypothesis is fulfilled

(H1) If u ∈ FC∞
b such that u = 0 µ-a.e., then ∇u = 0 µ-a.e. and the

(thus on L2(E, µ) well-defined) positive definite symmetric bilinear form

(Eµ, F̃C∞
b

µ

) is closable on L2(E, µ).

Under condition (H1) the Hilbert space H is sometimes called generalized Cameron-
Martin space of µ. We refer e.g. to [5] for the definition of closability and denote the

closure of (Eµ, F̃C∞
b

µ

) on L2(E, µ) by (Eµ, H
1,2
0 (E, µ)). Then (Eµ, H

1,2
0 (E, µ)) is a sym-

metric Dirichlet form (see e.g. [5]).

Remark 1.1 (i) For sufficient conditions for (H1) we refer to [2]. We note that those
conditions are also necessary, if one requires all partial derivatives to be closable separately
(see [2] for details).

(ii) Closability of the form (Eµ, F̃C∞
b

µ

) on L2(E, µ) is equivalent to the closability of
the operator

∇ : F̃C∞
b

µ

⊂ L2(E, µ) −→ L2(E → H, µ).

We denote its closure (whose domain is, of course, H1,2
0 (E, µ)) again by ∇.

If this operator is closable, then also for p > 2

∇ : F̃C∞
b

µ

⊂ Lp(E, µ) −→ Lp(E → H, µ).
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is closable. Indeed, if un → 0 in Lp(E, µ) as n →∞ and (∇un)n∈N is a Cauchy sequence
in Lp(E → H, µ), then the same holds in L2(E, µ) and L2(E → H, µ) respectively. By
assumption it follows that ∇un → 0 in L2(E → H, µ) as n →∞, hence in µ-measure, so
by Fatou’s Lemma ∫

‖∇un‖p
Hdµ 6 lim inf

m→∞

∫
‖∇un −∇um‖p

Hdµ.

But the right hand side can be made arbitrarily small.
(iii) Assuming that for p > 1

∇ : F̃C∞
b

µ

⊂ Lp(E, µ) −→ Lp(E → H, µ) is closable, (1.7)

we can prove all what follows for p > 1 instead of p = 2 with entirely similar proofs. For
simplicity we restrict, however, to the case p = 2. The definition of capacities, however,
we give for all p > 1 below.

(iv) We refer to [2] and [1] for examples for µ satisfying (H1). These examples include
the white noise measure on E, i.e. the centered Gaussian measure on (E,B(E)) with
Cameron-Martin space H. But many other Gaussian measures and moreover Gibbs mea-
sures from statistical mechanics are included.

If for p ∈ [1,∞) condition (1.7) holds, we denote the closure by (∇, H1,p
0 (E, µ)). For

notational convenience we then set as usual for p > 1

‖u‖1,p :=

(∫
(‖∇u‖p

H + |u|p) dµ

)1/p

, u ∈ H1,p
0 (E, µ). (1.8)

Now we recall the definition of capacity and intrinsic metric.

Definition 1.1. (i) For U ⊂ E, U open, and p ∈ [1,∞), we set

C1,p(U) := inf{‖u‖p
1,p | u ∈ H1,p

0 (E, µ), u > 1 µ-a.e. on U}

and for arbitrary A ⊂ E

C1,p(A) := inf{C1,p(U) | A ⊂ U}.

C1,p(A) is called capacity of A.
(ii) A function f : A 7→ R, A ⊂ E, is called C1,p-quasicontinuous if there exist closed

sets An ⊂ A, n ∈ N, such that f �An is continuous for all n ∈ N and limn→∞C1,p(E\An) =
0.

Definition 1.2. For x, y ∈ E set

ρ(x, y) := sup{f(x)− f(y) | f ∈ FC∞
b with ‖∇f‖H 6 1}.

ρ is called intrinsic metric of (Eµ, H
1,2
0 (E, µ)).

The following is well-known. The proof is easy and included for the reader’s convenience.

Lemma 1.3. Let x, y ∈ E. Then

ρ(x, y) = ‖x− y‖H ,

where we set ‖z‖H := +∞ if z ∈ E \H.
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Proof. Let f ∈ FC∞
b with ‖∇f‖H 6 1 and assume x− y ∈ H. Then

f(x)− f(y) =

∫ 1

0
E′〈Df(y + t(x− y), x− y〉Edt

=

∫ 1

0

〈∇f(y + t(x− y)), x− y〉Hdt

6 ‖x− y‖H .

Here Df denotes the Fréchet derivative of f . So,

ρ(x, y) 6 ‖x− y‖H for all x, y ∈ E.

Conversely, let χn ∈ C∞
b (R) satisfying |χn| 6 n+1, |χ′n| 6 1|, χn(s) = s for all s ∈ [−n, n].

The for l ∈ E ′ such that ‖l‖H 6 1 we have ‖∇χn(l)‖H 6 1 for all n ∈ N, hence for x, y ∈ E

E′〈l, x− y〉E 6 sup
n

(χn( E′〈l, x〉E)− χ( E′〈l, y〉E))

6 ρ(x, y).

So, by (1.3)
‖x− y‖H 6 ρ(x, y).

�

For A ⊂ E as usual we set

ρA(x) := inf{ρ(x, y) | y ∈ A}, x ∈ E.

Now we can formulate the main result of this section which we shall prove in the next
section.

Theorem 1.4. Assume hypothesis (H1) holds. Let A ∈ B(E) such that µ(A) = 1. Then
C1,2(ρA > 0) = 0, i.e., the ρ-closure of A has full C1,2-capacity.

2. proof of theorem 1.4

Throughout this section hypothesis (H1) is assumed to hold. Before we can prove
Theorem 1.4, we need the following lemma.

Lemma 2.1. Let K ⊂ E be ‖ · ‖E-compact and c ∈ (0,∞). Then ρK is B(E)-measurable
and

ρK ∧ c ∈ H1,2
0 (E, µ) and ‖∇(ρK ∧ c)‖H 6 1.

Furthermore, ρK ∧ c is C1,2-quasicontinuous.

Proof. Let {ei | i ∈ N} ⊂ E ′ be an orthonormal basis of H separating the points of E,
and for n ∈ N define Pn : E 7→ En := span{e1, · · · , en} by

Pnz :=
n∑

i=1

E′〈ei, z〉E ei, z ∈ E.

Fix y ∈ E. By a simple approximation argument on EN we see that

un(x) := ‖Pnx− Pny‖H ∧ c , x ∈ E,

is a function in H1,2
0 (E, µ) with ‖∇un‖H 6 1. Clearly

un(x) ↑ vy(x) := ‖x− y‖H ∧ c for all x ∈ E. (2.1)
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Hence by [5, Chap. I, Lemma 2.12] for y ∈ E, vy ∈ H1,2
0 (E, µ) with ‖∇vy‖H 6 1 and

un → vy weakly in H1,2
0 (E, µ), hence the Cesaro mean of a subsequence converges strongly

in H1,2
0 (E, µ). A standard argument of Egorov type for capacities (cf. [5, Chap.III, Sect.

3]) implies that selecting a subsequence if necessary, this Cesaro-mean converges C1,2-
quasiuniformly, i.e., uniformly on closed sets whose compliments have arbitrarily small
C1,2-capacity. Hence by (2.1) vy is C1,2 quasicontinuous.
Claim. Let dim E < ∞. Then the assertions of the lemma hold even without assuming
K to be compact.

Since dim E < ∞, we have H = E and ‖ ‖H and ‖ ‖E are equivalent norms. Let
{yn | n ∈ N} be a countable ‖ · ‖H-dense subset of K and defining

vN := inf{vy1 , · · · vyN
} , N ∈ N ,

we have
ρK ∧ c = inf

N
vN on E.

Furthermore, (cf. e.g. [5, Chap. IV, Sect 4]) vN ∈ H1
0 (E, µ) with

‖∇vN‖H 6 sup{‖∇vy1‖H , · · · , ‖∇vyN
‖H},

hence

‖∇vN‖H 6 1 for all N ∈ N.

Therefore, the claim follows by the same arguments as above.
Now we go back to the general case. First we show that for all x ∈ E

ρPnK(Pnx) ↑ ρK(x) as n →∞. (2.2)

(So, in particular, ρK is B(E)-measurable.)
Let x ∈ E. Obviously, ρPnK(Pnx) is increasing with n and

sup
n

ρPnK(Pnx) 6 ρK(x)

(cf. (2.1)). To prove the dual inequality we may assume that supn ρPnK(Pnx) < ∞. Let
a ∈ (0,∞) such that

sup
n

ρPnK(Pnx) < a.

Then there exist kn ∈ K such that

‖Pnx− Pnkn‖H < a for all n ∈ N. (2.3)

Since balls in H are weakly compact and K is compact in E, we can find a subsequence

such that knj

j→∞−−−→ k ∈ K w.r.t. ‖ ‖E and Pnj
x−Pnj

knj

j→∞−−−→ h ∈ H weakly in H. Hence
for all i ∈ N by (1.2)

E′〈ei, h〉E = lim
j→∞ E′〈ei, Pnj

x− Pnj
knj

〉
E

= lim
j→∞ E′〈ei, x− knj

〉
E

= E′〈ei, x− k〉E .

Since {ei | i ∈ N} separates the points of E, it follows that x− k = h and by (2.3) that

‖x− k‖H 6 lim inf
j→∞

‖Pnj
x− Pnj

knj
‖H 6 a. (2.4)

In particular, ρK(x) < ∞.
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Now suppose that for some ε ∈ (0, ρK(x))

sup
n

ρPnK(Pnx) < ρK(x)− ε.

Then applying the above with a := ρK(x)−ε, we get a contradiction from (2.4). So, (2.2)
is proved. Now the assertions follow from the claim and the same arguments used for its
proof. �

Proof of Theorem 1.4. By inner regularity there exist compact sets Kn ⊂ A, n ∈ N,
such that µ(Kn) ↑ µ(A) = 1. Let

un := ρKn ∧ 1, n ∈ N.

Then

u := inf
n

un = lim
n→∞

un > ρA ∧ 1 on E. (2.5)

Furthermore, u = 0 on
⋃

n>1 Kn, hence u = 0 µ-a.e.
By Lemma 2.1 and the same arguments as in its proof we obtain that u is C1,2-quasi-

continuous, hence by [5, Chap. III, Proposition 3.9] C1,2({u > 0}) = 0. But by (2.5),
{ρA > 0} ⊂ {u > 0} and the assertion is proved. �

3. a result on sets with zero capacity

Let {h1, h2, · · · } be an ONB of H and let En denote the linear span of {h1, · · · , hn}
and set K := ∪nEn. A sufficient condition on A for µ(A + K) = 0 is given in [4]. Now
we look for a condition which implies Cp,1(A + K) = 0. But we have to work under an
additional quasi-invariance hypothesis.

For k ∈ H define

τk(z) := z − k , z ∈ E . (3.1)

(H2) For all k ∈ H, µ is k–quasi-invariant, i.e., µ ◦ τ−1
sk

∼= µ for all s ∈ R, and
we assume the Radon-Nikodym derivatives

aµ
sk :=

d(µ ◦ τ−1
sk )

dµ
, s ∈ R ,

to have the following properties:
(H2a) aµ

sk ∈ ∩q>1L
q(E; µ), for all s ∈ R, and for all q ∈ [1,∞) the

function s 7−→ ‖aµ
sk‖q is locally bounded on R.

(H2b) For all compact C ⊂ R∫
C

1

aµ
sk(z)

ds < ∞ for µ-a.e. z ∈ E.

Here ds denotes Lebesgue measure on R.

Choosing appropriate versions by [1, Prop. 2.4] we may always assume that aµ
sk(z) is

jointly measurable in s and z and that (H2b) holds for all z ∈ E (rather than only µ-a.e.
z ∈ E).

For examples of measures µ satisfying condition (H2) we refer to [6, Section 3]. As
shown in [2] hypothesis (H2) implies (H1).
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We need Sobolev spaces with differentiability index higher than 1. Analogue to the
gradient operator ∇, we define the iterated gradient ∇2 on FC∞

b by

〈∇2u(z), h1 ⊗ h2〉H⊗H :=
d2

dtds
u(z + th1 + s2h2)|t=0. (3.2)

Assume that

(H3) ∇2 : F̃C∞
b

µ

⊂ Lp(E, µ) −→ Lp(E → H ⊗H, µ) is closable for p > 1. (3.3)

We define

H2,p
0 :=

{
u ∈ Lp | ‖u‖2,p :=

(∫ (
‖∇u‖p

H⊗H + ‖∇u‖p
H + |u|p

)
dµ

)1/p

< ∞

}
(3.4)

and the fractional Sobolev spaces Hr,p
0 (1 < p < ∞, 1 < r < 2) are defined by real

interpolation as follows.

Definition 3.1. For 1 < p < ∞, 1 < r < 2 we define

Hp
r = (H1,p

0 , H2,p
0 )r−1,p (3.5)

where (·, ·) denotes the real interpolation space, see e.g. [3, 9].

The norm in Hr,p
0 is given by the discrete K-method:

‖f‖r,p =
( ∞∑

n=1

|2n(r−1)K(2−n, f)|p
)1/p

< ∞. (3.6)

where

K(ε, f) = inf{‖f1‖1,p + ε‖f2‖2,p, f1 + f2 = f, f1 ∈ H1,p
0 , f2 ∈ H2,p

0 } (3.7)

It follows by a standard interpolation argument that Hr,p
0 is uniformly convex (see e.g.

[4]) and we know from the denseness of FC∞
b in H2,p

0 and [3, Th. 3.4.2] that FC∞
b

is dense in Hr,p
0 . A combination of these two facts implies that every u ∈ Hr,p

0 has a
Cr,p-quasicontinuous redefinition which we denote by ũ.

For 1 < p < ∞, 1 6 r 6 2 we define, for a [0,∞]-valued lower semi-continuous functions
h on E

Cr,p(h) := inf{‖u‖p
r,p; u ∈ Hr,p

0 , u > h, a.e.},
and for an arbitrary [−∞,∞]-valued function f on E

Cr,p(f) := inf{Cr,p(h); h is l.s.c.and h(x) > |f(x)| ∀x}.
This definition is an extension of the previous one for sets in the sense that for any B ⊂ E,

Cr,p(B) = Cr,p(1B).

The following result is parallel to Shigekawa [8] which is stated for Bessel capacities.
We omit the proof which is the same as in [8]. Note that (3.8) is implicit in [8].

Theorem 3.2. Fix q ∈ (1,∞), r ∈ (1, 2], β ∈ (0, 1] and 0 6 γ < β/q. Then there exists
a constant C = C(q, r, β, γ) such that If ξ : [0, T ]n × E 7→ R, (t, z) 7→ ξt(z) is measurable
and if

A(ξ) := sup
s 6=t,s,t∈[0,T ]n

‖ξt − ξs‖q
r,q

|t− s|n+β
< ∞,
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then {ξt} has a version {ξ̃t} such that ξ̃t is Cr,q-quasi-continuous for every t ∈ [0, T ]n and

Cr,q

(
sup
s 6=t

|ξ̃t − ξ̃s|
|t− s|γ

)
6 CA(ξ). (3.8)

Now we state the main result of this section.

Theorem 3.3. Suppose (H2) and (H3) hold and let A ⊂ E, p > 1. If for any n there
exists a pair (rn, pn) ∈ (1, 2]× (1, p) with rn > np−1

n + 1 such that

Crn,pn(A) = 0, ∀n,

then C1,p(A + K) = 0.

Since capacities are continuous from below Theorem 3.3 immediately follows from
Proposition 3.5 below. First we need a lemma.

Fix n ∈ N and define for t ∈ [−M, M ]n and f : E 7→ R a function f(t) := f(· +∑n
i=1 tihi).

Lemma 3.4. Fix n ∈ N and let p > q > 1 and r ∈ (1, 2]. Then there exists a constant
C := C(p, q, r, T ) such that for all f ∈ Hr,p

0

‖f(t)− f(s)‖1,q 6 C‖f‖r,p|t− s|r−1 (3.9)

for all s, t ∈ [0, T ]n.

Proof. By the same argument as in [6], we can prove that for any T > 0, p > 1, q ∈ (0, p)
there exists a constant C1 = C1(p, q, T ) such that for all f ∈ H2,p

0 and (s, t) ∈ [−T, T ]n ×
[−T, T ]n

‖f(·+
n∑

i=1

tihi)− f(·+
n∑

i=1

sihi)‖1,q 6 C1|t− s|‖f‖2,p. (3.10)

Now let f ∈ Hr,p
0 \ {0}. By (3.6), there exists a sequence (fn)n∈N ⊂ H2,p

0 such that

∞∑
n=1

2(r−1)pn
(
2−n‖fn‖2,p + ‖f − fn‖1,p

)p

6 2p‖f‖p
r,p. (3.11)

Choose the unique n ∈ N such that

2−nT < |t− s| 6 2−n+1T.

Then by (3.10), (3.11) for some constant C2 = C2(p, q, T )

‖f(t)− f(s)‖1,q 6 ‖f(t)− fn(t)‖1,q + ‖fn(t)− fn(s)‖1,q + ‖fn(s)− f(s)‖1,q

6 4C2‖f‖r,p2
−(r−1)n + ‖fn‖2,p2

−n+1TC1

6 4C2‖f‖r,p2
−(r−1)n(1 + TC1)

6
4C2(1 + TC1)

T r−1
|t− s|r−1‖f‖r,p (3.12)

and the assertion is proved. �
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Proposition 3.5. Let T > 0, n ∈ N, p > 1 and r ∈ (1, 2] such that r > np−1 + 1. Let
q ∈ (1, p) such that r > nq−1 + 1. Then there exists a constant C = C(n, p, q, r, T ) > 0
such that for any A ⊂ W we have

C1,q(A + M(T ; h1, · · · , hn)) 6 C · C
q
p
r,p(A) (3.13)

where

M(T ; h1, · · · , hn) := {
n∑

i=1

sihi, |si| 6 T}.

.

Proof. Set sh :=
∑n

i=1 sihi. By changing signs we only need to prove

C1,q(
⋃

s∈[0,T ]n

(A + sh)) 6 C · C
q
p
r,p(A). (3.14)

Let I denote the set of all rational points in [0, T ]n. If O ⊂ W is an open set then so is⋃
s∈[0,T ]n(O + sh) and we have ⋃

s∈[0,T ]n

(O + sh) =
⋃
s∈I

(O + sh)

Let eO denote the (r, p)-equilibrium potential of O. Since eO > 1O, we have

C1,q(
⋃

t∈[0,T ]n

(O + th)) = C1,q(sup
t∈I

1O(·+ th))

6 C1,q(sup
t∈I

eO(·+ th))

We set f(t) := eO(·+ th). Applying Lemma 3.4 gives

‖f(t)− f(s)‖1,q 6 C‖eO‖r,p|t− s|r−1. (3.15)

For γ ∈ [0, r−1−nq−1), by Theorem 3.2 there exists a C1,q-quasicontinuous modification
{ξt(·), t ∈ [0, T ]n} of {eO(·+ th), t ∈ [0, T ]n} such that

C1,q

[
sup

s,t∈[0,T ]ns 6=t

( |ξt − ξs)|
|t− s|γ

)]
6 C‖eO‖q

r,p

for some constant C = C(n, p, q, r, T ) which may be different from that in (3.15). In
particular, taking γ = 0 we obtain

C1,q(sup
s 6=t

|ξt − ξs|) 6 C · ‖eO‖q
r,p.

Hence

C1,q(sup
t∈I

eO(·+ th)) = C1,q(sup
t∈I

|ξt|)

6 C1,q( sup
t∈[0,T ]

|ξt − ξ0|+ |ξ0|)

6 (C + 1) · ‖eO‖q
r,p

= (C + 1) · C
q
p
r,p(O).
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Thus (3.13) is proved for open sets. For general A, we have for O ⊃ A, O open

C1,q(
⋃

s∈[0,T ]n

(A + sh)) 6 C1,q(
⋃

s∈[0,T ]n

(O + sh))

6 (C + 1) · C
q
p
r,p(O). (3.16)

Consequently,

C1,q(
⋃

s∈[0,T ]n

(A + sh)) 6 (C + 1) · inf{C
q
p
r,p(O), O ⊃ A}

= (C + 1) · C
q
p
r,p(A), (3.17)

as desired. �
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[3] Bergh, J.; Löfström, J. Interpolation spaces. An introduction. Grundlehren der Mathematischen
Wissenschaften, No. 223. Springer-Verlag, Berlin-New York, 1976.

[4] Hu, J. and Ren, J.: Infinite Dimensional Quasi Continuity, Path Continuity and Ray Continuity of
Functions with Fractional Regularity. J. Math. Pures Appl. 80,1(2001), pp.131-152.
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